whoami7 - Manager
:
/
opt
/
cloudlinux
/
venv
/
lib
/
python3.11
/
site-packages
/
pydantic
/
_internal
/
Upload File:
files >> //opt/cloudlinux/venv/lib/python3.11/site-packages/pydantic/_internal/_model_construction.py
"""Private logic for creating models.""" from __future__ import annotations as _annotations import typing import warnings import weakref from abc import ABCMeta from functools import partial from types import FunctionType from typing import Any, Callable, Generic, Mapping from pydantic_core import PydanticUndefined, SchemaSerializer from typing_extensions import dataclass_transform, deprecated from ..errors import PydanticUndefinedAnnotation, PydanticUserError from ..fields import Field, FieldInfo, ModelPrivateAttr, PrivateAttr from ..plugin._schema_validator import create_schema_validator from ..warnings import PydanticDeprecatedSince20 from ._config import ConfigWrapper from ._core_utils import collect_invalid_schemas, simplify_schema_references, validate_core_schema from ._decorators import ( ComputedFieldInfo, DecoratorInfos, PydanticDescriptorProxy, get_attribute_from_bases, ) from ._discriminated_union import apply_discriminators from ._fields import collect_model_fields, is_valid_field_name, is_valid_privateattr_name from ._generate_schema import GenerateSchema from ._generics import PydanticGenericMetadata, get_model_typevars_map from ._mock_val_ser import MockValSer, set_model_mocks from ._schema_generation_shared import CallbackGetCoreSchemaHandler from ._typing_extra import get_cls_types_namespace, is_classvar, parent_frame_namespace from ._utils import ClassAttribute, is_valid_identifier from ._validate_call import ValidateCallWrapper if typing.TYPE_CHECKING: from inspect import Signature from ..main import BaseModel else: # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 # and https://youtrack.jetbrains.com/issue/PY-51428 DeprecationWarning = PydanticDeprecatedSince20 IGNORED_TYPES: tuple[Any, ...] = ( FunctionType, property, classmethod, staticmethod, PydanticDescriptorProxy, ComputedFieldInfo, ValidateCallWrapper, ) object_setattr = object.__setattr__ class _ModelNamespaceDict(dict): """A dictionary subclass that intercepts attribute setting on model classes and warns about overriding of decorators. """ def __setitem__(self, k: str, v: object) -> None: existing: Any = self.get(k, None) if existing and v is not existing and isinstance(existing, PydanticDescriptorProxy): warnings.warn(f'`{k}` overrides an existing Pydantic `{existing.decorator_info.decorator_repr}` decorator') return super().__setitem__(k, v) @dataclass_transform(kw_only_default=True, field_specifiers=(Field,)) class ModelMetaclass(ABCMeta): def __new__( mcs, cls_name: str, bases: tuple[type[Any], ...], namespace: dict[str, Any], __pydantic_generic_metadata__: PydanticGenericMetadata | None = None, __pydantic_reset_parent_namespace__: bool = True, **kwargs: Any, ) -> type: """Metaclass for creating Pydantic models. Args: cls_name: The name of the class to be created. bases: The base classes of the class to be created. namespace: The attribute dictionary of the class to be created. __pydantic_generic_metadata__: Metadata for generic models. __pydantic_reset_parent_namespace__: Reset parent namespace. **kwargs: Catch-all for any other keyword arguments. Returns: The new class created by the metaclass. """ # Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we rely on the fact # that `BaseModel` itself won't have any bases, but any subclass of it will, to determine whether the `__new__` # call we're in the middle of is for the `BaseModel` class. if bases: base_field_names, class_vars, base_private_attributes = mcs._collect_bases_data(bases) config_wrapper = ConfigWrapper.for_model(bases, namespace, kwargs) namespace['model_config'] = config_wrapper.config_dict private_attributes = inspect_namespace( namespace, config_wrapper.ignored_types, class_vars, base_field_names ) if private_attributes: original_model_post_init = get_model_post_init(namespace, bases) if original_model_post_init is not None: # if there are private_attributes and a model_post_init function, we handle both def wrapped_model_post_init(self: BaseModel, __context: Any) -> None: """We need to both initialize private attributes and call the user-defined model_post_init method. """ init_private_attributes(self, __context) original_model_post_init(self, __context) namespace['model_post_init'] = wrapped_model_post_init else: namespace['model_post_init'] = init_private_attributes namespace['__class_vars__'] = class_vars namespace['__private_attributes__'] = {**base_private_attributes, **private_attributes} if config_wrapper.frozen: set_default_hash_func(namespace, bases) cls: type[BaseModel] = super().__new__(mcs, cls_name, bases, namespace, **kwargs) # type: ignore from ..main import BaseModel cls.__pydantic_custom_init__ = not getattr(cls.__init__, '__pydantic_base_init__', False) cls.__pydantic_post_init__ = None if cls.model_post_init is BaseModel.model_post_init else 'model_post_init' cls.__pydantic_decorators__ = DecoratorInfos.build(cls) # Use the getattr below to grab the __parameters__ from the `typing.Generic` parent class if __pydantic_generic_metadata__: cls.__pydantic_generic_metadata__ = __pydantic_generic_metadata__ else: parent_parameters = getattr(cls, '__pydantic_generic_metadata__', {}).get('parameters', ()) parameters = getattr(cls, '__parameters__', None) or parent_parameters if parameters and parent_parameters and not all(x in parameters for x in parent_parameters): combined_parameters = parent_parameters + tuple(x for x in parameters if x not in parent_parameters) parameters_str = ', '.join([str(x) for x in combined_parameters]) generic_type_label = f'typing.Generic[{parameters_str}]' error_message = ( f'All parameters must be present on typing.Generic;' f' you should inherit from {generic_type_label}.' ) if Generic not in bases: # pragma: no cover # We raise an error here not because it is desirable, but because some cases are mishandled. # It would be nice to remove this error and still have things behave as expected, it's just # challenging because we are using a custom `__class_getitem__` to parametrize generic models, # and not returning a typing._GenericAlias from it. bases_str = ', '.join([x.__name__ for x in bases] + [generic_type_label]) error_message += ( f' Note: `typing.Generic` must go last: `class {cls.__name__}({bases_str}): ...`)' ) raise TypeError(error_message) cls.__pydantic_generic_metadata__ = { 'origin': None, 'args': (), 'parameters': parameters, } cls.__pydantic_complete__ = False # Ensure this specific class gets completed # preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487 # for attributes not in `new_namespace` (e.g. private attributes) for name, obj in private_attributes.items(): obj.__set_name__(cls, name) if __pydantic_reset_parent_namespace__: cls.__pydantic_parent_namespace__ = build_lenient_weakvaluedict(parent_frame_namespace()) parent_namespace = getattr(cls, '__pydantic_parent_namespace__', None) if isinstance(parent_namespace, dict): parent_namespace = unpack_lenient_weakvaluedict(parent_namespace) types_namespace = get_cls_types_namespace(cls, parent_namespace) set_model_fields(cls, bases, config_wrapper, types_namespace) complete_model_class( cls, cls_name, config_wrapper, raise_errors=False, types_namespace=types_namespace, ) # using super(cls, cls) on the next line ensures we only call the parent class's __pydantic_init_subclass__ # I believe the `type: ignore` is only necessary because mypy doesn't realize that this code branch is # only hit for _proper_ subclasses of BaseModel super(cls, cls).__pydantic_init_subclass__(**kwargs) # type: ignore[misc] return cls else: # this is the BaseModel class itself being created, no logic required return super().__new__(mcs, cls_name, bases, namespace, **kwargs) if not typing.TYPE_CHECKING: # We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access def __getattr__(self, item: str) -> Any: """This is necessary to keep attribute access working for class attribute access.""" private_attributes = self.__dict__.get('__private_attributes__') if private_attributes and item in private_attributes: return private_attributes[item] if item == '__pydantic_core_schema__': # This means the class didn't get a schema generated for it, likely because there was an undefined reference maybe_mock_validator = getattr(self, '__pydantic_validator__', None) if isinstance(maybe_mock_validator, MockValSer): rebuilt_validator = maybe_mock_validator.rebuild() if rebuilt_validator is not None: # In this case, a validator was built, and so `__pydantic_core_schema__` should now be set return getattr(self, '__pydantic_core_schema__') raise AttributeError(item) @classmethod def __prepare__(cls, *args: Any, **kwargs: Any) -> Mapping[str, object]: return _ModelNamespaceDict() def __instancecheck__(self, instance: Any) -> bool: """Avoid calling ABC _abc_subclasscheck unless we're pretty sure. See #3829 and python/cpython#92810 """ return hasattr(instance, '__pydantic_validator__') and super().__instancecheck__(instance) @staticmethod def _collect_bases_data(bases: tuple[type[Any], ...]) -> tuple[set[str], set[str], dict[str, ModelPrivateAttr]]: from ..main import BaseModel field_names: set[str] = set() class_vars: set[str] = set() private_attributes: dict[str, ModelPrivateAttr] = {} for base in bases: if issubclass(base, BaseModel) and base is not BaseModel: # model_fields might not be defined yet in the case of generics, so we use getattr here: field_names.update(getattr(base, 'model_fields', {}).keys()) class_vars.update(base.__class_vars__) private_attributes.update(base.__private_attributes__) return field_names, class_vars, private_attributes @property @deprecated( 'The `__fields__` attribute is deprecated, use `model_fields` instead.', category=PydanticDeprecatedSince20 ) def __fields__(self) -> dict[str, FieldInfo]: warnings.warn('The `__fields__` attribute is deprecated, use `model_fields` instead.', DeprecationWarning) return self.model_fields # type: ignore def init_private_attributes(self: BaseModel, __context: Any) -> None: """This function is meant to behave like a BaseModel method to initialise private attributes. It takes context as an argument since that's what pydantic-core passes when calling it. Args: self: The BaseModel instance. __context: The context. """ pydantic_private = {} for name, private_attr in self.__private_attributes__.items(): default = private_attr.get_default() if default is not PydanticUndefined: pydantic_private[name] = default object_setattr(self, '__pydantic_private__', pydantic_private) def get_model_post_init(namespace: dict[str, Any], bases: tuple[type[Any], ...]) -> Callable[..., Any] | None: """Get the `model_post_init` method from the namespace or the class bases, or `None` if not defined.""" if 'model_post_init' in namespace: return namespace['model_post_init'] from ..main import BaseModel model_post_init = get_attribute_from_bases(bases, 'model_post_init') if model_post_init is not BaseModel.model_post_init: return model_post_init def inspect_namespace( # noqa C901 namespace: dict[str, Any], ignored_types: tuple[type[Any], ...], base_class_vars: set[str], base_class_fields: set[str], ) -> dict[str, ModelPrivateAttr]: """Iterate over the namespace and: * gather private attributes * check for items which look like fields but are not (e.g. have no annotation) and warn. Args: namespace: The attribute dictionary of the class to be created. ignored_types: A tuple of ignore types. base_class_vars: A set of base class class variables. base_class_fields: A set of base class fields. Returns: A dict contains private attributes info. Raises: TypeError: If there is a `__root__` field in model. NameError: If private attribute name is invalid. PydanticUserError: - If a field does not have a type annotation. - If a field on base class was overridden by a non-annotated attribute. """ all_ignored_types = ignored_types + IGNORED_TYPES private_attributes: dict[str, ModelPrivateAttr] = {} raw_annotations = namespace.get('__annotations__', {}) if '__root__' in raw_annotations or '__root__' in namespace: raise TypeError("To define root models, use `pydantic.RootModel` rather than a field called '__root__'") ignored_names: set[str] = set() for var_name, value in list(namespace.items()): if var_name == 'model_config': continue elif ( isinstance(value, type) and value.__module__ == namespace['__module__'] and value.__qualname__.startswith(namespace['__qualname__']) ): # `value` is a nested type defined in this namespace; don't error continue elif isinstance(value, all_ignored_types) or value.__class__.__module__ == 'functools': ignored_names.add(var_name) continue elif isinstance(value, ModelPrivateAttr): if var_name.startswith('__'): raise NameError( 'Private attributes must not use dunder names;' f' use a single underscore prefix instead of {var_name!r}.' ) elif is_valid_field_name(var_name): raise NameError( 'Private attributes must not use valid field names;' f' use sunder names, e.g. {"_" + var_name!r} instead of {var_name!r}.' ) private_attributes[var_name] = value del namespace[var_name] elif isinstance(value, FieldInfo) and not is_valid_field_name(var_name): suggested_name = var_name.lstrip('_') or 'my_field' # don't suggest '' for all-underscore name raise NameError( f'Fields must not use names with leading underscores;' f' e.g., use {suggested_name!r} instead of {var_name!r}.' ) elif var_name.startswith('__'): continue elif is_valid_privateattr_name(var_name): if var_name not in raw_annotations or not is_classvar(raw_annotations[var_name]): private_attributes[var_name] = PrivateAttr(default=value) del namespace[var_name] elif var_name in base_class_vars: continue elif var_name not in raw_annotations: if var_name in base_class_fields: raise PydanticUserError( f'Field {var_name!r} defined on a base class was overridden by a non-annotated attribute. ' f'All field definitions, including overrides, require a type annotation.', code='model-field-overridden', ) elif isinstance(value, FieldInfo): raise PydanticUserError( f'Field {var_name!r} requires a type annotation', code='model-field-missing-annotation' ) else: raise PydanticUserError( f"A non-annotated attribute was detected: `{var_name} = {value!r}`. All model fields require a " f"type annotation; if `{var_name}` is not meant to be a field, you may be able to resolve this " f"error by annotating it as a `ClassVar` or updating `model_config['ignored_types']`.", code='model-field-missing-annotation', ) for ann_name, ann_type in raw_annotations.items(): if ( is_valid_privateattr_name(ann_name) and ann_name not in private_attributes and ann_name not in ignored_names and not is_classvar(ann_type) and ann_type not in all_ignored_types and getattr(ann_type, '__module__', None) != 'functools' ): private_attributes[ann_name] = PrivateAttr() return private_attributes def set_default_hash_func(namespace: dict[str, Any], bases: tuple[type[Any], ...]) -> None: if '__hash__' in namespace: return base_hash_func = get_attribute_from_bases(bases, '__hash__') if base_hash_func in {None, object.__hash__}: # If `__hash__` is None _or_ `object.__hash__`, we generate a hash function. # It will be `None` if not overridden from BaseModel, but may be `object.__hash__` if there is another # parent class earlier in the bases which doesn't override `__hash__` (e.g. `typing.Generic`). def hash_func(self: Any) -> int: return hash(self.__class__) + hash(tuple(self.__dict__.values())) namespace['__hash__'] = hash_func def set_model_fields( cls: type[BaseModel], bases: tuple[type[Any], ...], config_wrapper: ConfigWrapper, types_namespace: dict[str, Any] ) -> None: """Collect and set `cls.model_fields` and `cls.__class_vars__`. Args: cls: BaseModel or dataclass. bases: Parents of the class, generally `cls.__bases__`. config_wrapper: The config wrapper instance. types_namespace: Optional extra namespace to look for types in. """ typevars_map = get_model_typevars_map(cls) fields, class_vars = collect_model_fields(cls, bases, config_wrapper, types_namespace, typevars_map=typevars_map) cls.model_fields = fields cls.__class_vars__.update(class_vars) for k in class_vars: # Class vars should not be private attributes # We remove them _here_ and not earlier because we rely on inspecting the class to determine its classvars, # but private attributes are determined by inspecting the namespace _prior_ to class creation. # In the case that a classvar with a leading-'_' is defined via a ForwardRef (e.g., when using # `__future__.annotations`), we want to remove the private attribute which was detected _before_ we knew it # evaluated to a classvar value = cls.__private_attributes__.pop(k, None) if value is not None and value.default is not PydanticUndefined: setattr(cls, k, value.default) def complete_model_class( cls: type[BaseModel], cls_name: str, config_wrapper: ConfigWrapper, *, raise_errors: bool = True, types_namespace: dict[str, Any] | None, ) -> bool: """Finish building a model class. This logic must be called after class has been created since validation functions must be bound and `get_type_hints` requires a class object. Args: cls: BaseModel or dataclass. cls_name: The model or dataclass name. config_wrapper: The config wrapper instance. raise_errors: Whether to raise errors. types_namespace: Optional extra namespace to look for types in. Returns: `True` if the model is successfully completed, else `False`. Raises: PydanticUndefinedAnnotation: If `PydanticUndefinedAnnotation` occurs in`__get_pydantic_core_schema__` and `raise_errors=True`. """ typevars_map = get_model_typevars_map(cls) gen_schema = GenerateSchema( config_wrapper, types_namespace, typevars_map, ) handler = CallbackGetCoreSchemaHandler( partial(gen_schema.generate_schema, from_dunder_get_core_schema=False), gen_schema, ref_mode='unpack', ) if config_wrapper.defer_build: set_model_mocks(cls, cls_name) return False try: schema = cls.__get_pydantic_core_schema__(cls, handler) except PydanticUndefinedAnnotation as e: if raise_errors: raise set_model_mocks(cls, cls_name, f'`{e.name}`') return False core_config = config_wrapper.core_config(cls) schema = gen_schema.collect_definitions(schema) schema = apply_discriminators(simplify_schema_references(schema)) if collect_invalid_schemas(schema): set_model_mocks(cls, cls_name) return False # debug(schema) cls.__pydantic_core_schema__ = schema = validate_core_schema(schema) cls.__pydantic_validator__ = create_schema_validator(schema, core_config, config_wrapper.plugin_settings) cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config) cls.__pydantic_complete__ = True # set __signature__ attr only for model class, but not for its instances cls.__signature__ = ClassAttribute( '__signature__', generate_model_signature(cls.__init__, cls.model_fields, config_wrapper) ) return True def generate_model_signature( init: Callable[..., None], fields: dict[str, FieldInfo], config_wrapper: ConfigWrapper ) -> Signature: """Generate signature for model based on its fields. Args: init: The class init. fields: The model fields. config_wrapper: The config wrapper instance. Returns: The model signature. """ from inspect import Parameter, Signature, signature from itertools import islice present_params = signature(init).parameters.values() merged_params: dict[str, Parameter] = {} var_kw = None use_var_kw = False for param in islice(present_params, 1, None): # skip self arg # inspect does "clever" things to show annotations as strings because we have # `from __future__ import annotations` in main, we don't want that if param.annotation == 'Any': param = param.replace(annotation=Any) if param.kind is param.VAR_KEYWORD: var_kw = param continue merged_params[param.name] = param if var_kw: # if custom init has no var_kw, fields which are not declared in it cannot be passed through allow_names = config_wrapper.populate_by_name for field_name, field in fields.items(): # when alias is a str it should be used for signature generation if isinstance(field.alias, str): param_name = field.alias else: param_name = field_name if field_name in merged_params or param_name in merged_params: continue if not is_valid_identifier(param_name): if allow_names and is_valid_identifier(field_name): param_name = field_name else: use_var_kw = True continue kwargs = {} if field.is_required() else {'default': field.get_default(call_default_factory=False)} merged_params[param_name] = Parameter( param_name, Parameter.KEYWORD_ONLY, annotation=field.rebuild_annotation(), **kwargs ) if config_wrapper.extra == 'allow': use_var_kw = True if var_kw and use_var_kw: # Make sure the parameter for extra kwargs # does not have the same name as a field default_model_signature = [ ('__pydantic_self__', Parameter.POSITIONAL_OR_KEYWORD), ('data', Parameter.VAR_KEYWORD), ] if [(p.name, p.kind) for p in present_params] == default_model_signature: # if this is the standard model signature, use extra_data as the extra args name var_kw_name = 'extra_data' else: # else start from var_kw var_kw_name = var_kw.name # generate a name that's definitely unique while var_kw_name in fields: var_kw_name += '_' merged_params[var_kw_name] = var_kw.replace(name=var_kw_name) return Signature(parameters=list(merged_params.values()), return_annotation=None) class _PydanticWeakRef(weakref.ReferenceType): pass def build_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None: """Takes an input dictionary, and produces a new value that (invertibly) replaces the values with weakrefs. We can't just use a WeakValueDictionary because many types (including int, str, etc.) can't be stored as values in a WeakValueDictionary. The `unpack_lenient_weakvaluedict` function can be used to reverse this operation. """ if d is None: return None result = {} for k, v in d.items(): try: proxy = _PydanticWeakRef(v) except TypeError: proxy = v result[k] = proxy return result def unpack_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None: """Inverts the transform performed by `build_lenient_weakvaluedict`.""" if d is None: return None result = {} for k, v in d.items(): if isinstance(v, _PydanticWeakRef): v = v() if v is not None: result[k] = v else: result[k] = v return result
Copyright ©2021 || Defacer Indonesia