whoami7 - Manager
:
/
opt
/
cloudlinux
/
venv
/
lib
/
python3.11
/
site-packages
/
pydantic
/
_internal
/
Upload File:
files >> //opt/cloudlinux/venv/lib/python3.11/site-packages/pydantic/_internal/_utils.py
"""Bucket of reusable internal utilities. This should be reduced as much as possible with functions only used in one place, moved to that place. """ from __future__ import annotations as _annotations import keyword import typing import weakref from collections import OrderedDict, defaultdict, deque from copy import deepcopy from itertools import zip_longest from types import BuiltinFunctionType, CodeType, FunctionType, GeneratorType, LambdaType, ModuleType from typing import Any, TypeVar from typing_extensions import TypeAlias, TypeGuard from . import _repr, _typing_extra if typing.TYPE_CHECKING: MappingIntStrAny: TypeAlias = 'typing.Mapping[int, Any] | typing.Mapping[str, Any]' AbstractSetIntStr: TypeAlias = 'typing.AbstractSet[int] | typing.AbstractSet[str]' from ..main import BaseModel # these are types that are returned unchanged by deepcopy IMMUTABLE_NON_COLLECTIONS_TYPES: set[type[Any]] = { int, float, complex, str, bool, bytes, type, _typing_extra.NoneType, FunctionType, BuiltinFunctionType, LambdaType, weakref.ref, CodeType, # note: including ModuleType will differ from behaviour of deepcopy by not producing error. # It might be not a good idea in general, but considering that this function used only internally # against default values of fields, this will allow to actually have a field with module as default value ModuleType, NotImplemented.__class__, Ellipsis.__class__, } # these are types that if empty, might be copied with simple copy() instead of deepcopy() BUILTIN_COLLECTIONS: set[type[Any]] = { list, set, tuple, frozenset, dict, OrderedDict, defaultdict, deque, } def sequence_like(v: Any) -> bool: return isinstance(v, (list, tuple, set, frozenset, GeneratorType, deque)) def lenient_isinstance(o: Any, class_or_tuple: type[Any] | tuple[type[Any], ...] | None) -> bool: # pragma: no cover try: return isinstance(o, class_or_tuple) # type: ignore[arg-type] except TypeError: return False def lenient_issubclass(cls: Any, class_or_tuple: Any) -> bool: # pragma: no cover try: return isinstance(cls, type) and issubclass(cls, class_or_tuple) except TypeError: if isinstance(cls, _typing_extra.WithArgsTypes): return False raise # pragma: no cover def is_model_class(cls: Any) -> TypeGuard[type[BaseModel]]: """Returns true if cls is a _proper_ subclass of BaseModel, and provides proper type-checking, unlike raw calls to lenient_issubclass. """ from ..main import BaseModel return lenient_issubclass(cls, BaseModel) and cls is not BaseModel def is_valid_identifier(identifier: str) -> bool: """Checks that a string is a valid identifier and not a Python keyword. :param identifier: The identifier to test. :return: True if the identifier is valid. """ return identifier.isidentifier() and not keyword.iskeyword(identifier) KeyType = TypeVar('KeyType') def deep_update(mapping: dict[KeyType, Any], *updating_mappings: dict[KeyType, Any]) -> dict[KeyType, Any]: updated_mapping = mapping.copy() for updating_mapping in updating_mappings: for k, v in updating_mapping.items(): if k in updated_mapping and isinstance(updated_mapping[k], dict) and isinstance(v, dict): updated_mapping[k] = deep_update(updated_mapping[k], v) else: updated_mapping[k] = v return updated_mapping def update_not_none(mapping: dict[Any, Any], **update: Any) -> None: mapping.update({k: v for k, v in update.items() if v is not None}) T = TypeVar('T') def unique_list( input_list: list[T] | tuple[T, ...], *, name_factory: typing.Callable[[T], str] = str, ) -> list[T]: """Make a list unique while maintaining order. We update the list if another one with the same name is set (e.g. model validator overridden in subclass). """ result: list[T] = [] result_names: list[str] = [] for v in input_list: v_name = name_factory(v) if v_name not in result_names: result_names.append(v_name) result.append(v) else: result[result_names.index(v_name)] = v return result class ValueItems(_repr.Representation): """Class for more convenient calculation of excluded or included fields on values.""" __slots__ = ('_items', '_type') def __init__(self, value: Any, items: AbstractSetIntStr | MappingIntStrAny) -> None: items = self._coerce_items(items) if isinstance(value, (list, tuple)): items = self._normalize_indexes(items, len(value)) # type: ignore self._items: MappingIntStrAny = items # type: ignore def is_excluded(self, item: Any) -> bool: """Check if item is fully excluded. :param item: key or index of a value """ return self.is_true(self._items.get(item)) def is_included(self, item: Any) -> bool: """Check if value is contained in self._items. :param item: key or index of value """ return item in self._items def for_element(self, e: int | str) -> AbstractSetIntStr | MappingIntStrAny | None: """:param e: key or index of element on value :return: raw values for element if self._items is dict and contain needed element """ item = self._items.get(e) # type: ignore return item if not self.is_true(item) else None def _normalize_indexes(self, items: MappingIntStrAny, v_length: int) -> dict[int | str, Any]: """:param items: dict or set of indexes which will be normalized :param v_length: length of sequence indexes of which will be >>> self._normalize_indexes({0: True, -2: True, -1: True}, 4) {0: True, 2: True, 3: True} >>> self._normalize_indexes({'__all__': True}, 4) {0: True, 1: True, 2: True, 3: True} """ normalized_items: dict[int | str, Any] = {} all_items = None for i, v in items.items(): if not (isinstance(v, typing.Mapping) or isinstance(v, typing.AbstractSet) or self.is_true(v)): raise TypeError(f'Unexpected type of exclude value for index "{i}" {v.__class__}') if i == '__all__': all_items = self._coerce_value(v) continue if not isinstance(i, int): raise TypeError( 'Excluding fields from a sequence of sub-models or dicts must be performed index-wise: ' 'expected integer keys or keyword "__all__"' ) normalized_i = v_length + i if i < 0 else i normalized_items[normalized_i] = self.merge(v, normalized_items.get(normalized_i)) if not all_items: return normalized_items if self.is_true(all_items): for i in range(v_length): normalized_items.setdefault(i, ...) return normalized_items for i in range(v_length): normalized_item = normalized_items.setdefault(i, {}) if not self.is_true(normalized_item): normalized_items[i] = self.merge(all_items, normalized_item) return normalized_items @classmethod def merge(cls, base: Any, override: Any, intersect: bool = False) -> Any: """Merge a `base` item with an `override` item. Both `base` and `override` are converted to dictionaries if possible. Sets are converted to dictionaries with the sets entries as keys and Ellipsis as values. Each key-value pair existing in `base` is merged with `override`, while the rest of the key-value pairs are updated recursively with this function. Merging takes place based on the "union" of keys if `intersect` is set to `False` (default) and on the intersection of keys if `intersect` is set to `True`. """ override = cls._coerce_value(override) base = cls._coerce_value(base) if override is None: return base if cls.is_true(base) or base is None: return override if cls.is_true(override): return base if intersect else override # intersection or union of keys while preserving ordering: if intersect: merge_keys = [k for k in base if k in override] + [k for k in override if k in base] else: merge_keys = list(base) + [k for k in override if k not in base] merged: dict[int | str, Any] = {} for k in merge_keys: merged_item = cls.merge(base.get(k), override.get(k), intersect=intersect) if merged_item is not None: merged[k] = merged_item return merged @staticmethod def _coerce_items(items: AbstractSetIntStr | MappingIntStrAny) -> MappingIntStrAny: if isinstance(items, typing.Mapping): pass elif isinstance(items, typing.AbstractSet): items = dict.fromkeys(items, ...) # type: ignore else: class_name = getattr(items, '__class__', '???') raise TypeError(f'Unexpected type of exclude value {class_name}') return items # type: ignore @classmethod def _coerce_value(cls, value: Any) -> Any: if value is None or cls.is_true(value): return value return cls._coerce_items(value) @staticmethod def is_true(v: Any) -> bool: return v is True or v is ... def __repr_args__(self) -> _repr.ReprArgs: return [(None, self._items)] if typing.TYPE_CHECKING: def ClassAttribute(name: str, value: T) -> T: ... else: class ClassAttribute: """Hide class attribute from its instances.""" __slots__ = 'name', 'value' def __init__(self, name: str, value: Any) -> None: self.name = name self.value = value def __get__(self, instance: Any, owner: type[Any]) -> None: if instance is None: return self.value raise AttributeError(f'{self.name!r} attribute of {owner.__name__!r} is class-only') Obj = TypeVar('Obj') def smart_deepcopy(obj: Obj) -> Obj: """Return type as is for immutable built-in types Use obj.copy() for built-in empty collections Use copy.deepcopy() for non-empty collections and unknown objects. """ obj_type = obj.__class__ if obj_type in IMMUTABLE_NON_COLLECTIONS_TYPES: return obj # fastest case: obj is immutable and not collection therefore will not be copied anyway try: if not obj and obj_type in BUILTIN_COLLECTIONS: # faster way for empty collections, no need to copy its members return obj if obj_type is tuple else obj.copy() # tuple doesn't have copy method except (TypeError, ValueError, RuntimeError): # do we really dare to catch ALL errors? Seems a bit risky pass return deepcopy(obj) # slowest way when we actually might need a deepcopy _EMPTY = object() def all_identical(left: typing.Iterable[Any], right: typing.Iterable[Any]) -> bool: """Check that the items of `left` are the same objects as those in `right`. >>> a, b = object(), object() >>> all_identical([a, b, a], [a, b, a]) True >>> all_identical([a, b, [a]], [a, b, [a]]) # new list object, while "equal" is not "identical" False """ for left_item, right_item in zip_longest(left, right, fillvalue=_EMPTY): if left_item is not right_item: return False return True
Copyright ©2021 || Defacer Indonesia