whoami7 - Manager
:
/
opt
/
cpanel
/
ea-apr16
/
include
/
apr-1
/
Upload File:
files >> //opt/cpanel/ea-apr16/include/apr-1/apr_crypto.h
/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef APR_CRYPTO_H #define APR_CRYPTO_H #include "apu.h" #include "apr_pools.h" #include "apr_tables.h" #include "apr_hash.h" #include "apu_errno.h" #ifdef __cplusplus extern "C" { #endif /** * @file apr_crypto.h * @brief APR-UTIL Crypto library */ /** * @defgroup APR_Util_Crypto Crypto routines * @ingroup APR_Util * @{ */ #if APU_HAVE_CRYPTO #ifndef APU_CRYPTO_RECOMMENDED_DRIVER #if APU_HAVE_COMMONCRYPTO #define APU_CRYPTO_RECOMMENDED_DRIVER "commoncrypto" #else #if APU_HAVE_OPENSSL #define APU_CRYPTO_RECOMMENDED_DRIVER "openssl" #else #if APU_HAVE_NSS #define APU_CRYPTO_RECOMMENDED_DRIVER "nss" #else #if APU_HAVE_MSCNG #define APU_CRYPTO_RECOMMENDED_DRIVER "mscng" #else #if APU_HAVE_MSCAPI #define APU_CRYPTO_RECOMMENDED_DRIVER "mscapi" #else #endif #endif #endif #endif #endif #endif /** * Symmetric Key types understood by the library. * * NOTE: It is expected that this list will grow over time. * * Interoperability Matrix: * * The matrix is based on the testcrypto.c unit test, which attempts to * test whether a simple encrypt/decrypt will succeed, as well as testing * whether an encrypted string by one library can be decrypted by the * others. * * Some libraries will successfully encrypt and decrypt their own data, * but won't decrypt data from another library. It is hoped that over * time these anomalies will be found and fixed, but until then it is * recommended that ciphers are chosen that interoperate across platform. * * An X below means the test passes, it does not necessarily mean that * encryption performed is correct or secure. Applications should stick * to ciphers that pass the interoperablity tests on the right hand side * of the table. * * Aligned data is data whose length is a multiple of the block size for * the chosen cipher. Padded data is data that is not aligned by block * size and must be padded by the crypto library. * * OpenSSL CommonCrypto NSS Interop * Align Pad Align Pad Align Pad Align Pad * 3DES_192/CBC X X X X X X X X * 3DES_192/ECB X X X X * AES_256/CBC X X X X X X X X * AES_256/ECB X X X X X X * AES_192/CBC X X X X X X * AES_192/ECB X X X X X * AES_128/CBC X X X X X X * AES_128/ECB X X X X X * * Conclusion: for padded data, use 3DES_192/CBC or AES_256/CBC. For * aligned data, use 3DES_192/CBC, AES_256/CBC or AES_256/ECB. */ typedef enum { APR_KEY_NONE, APR_KEY_3DES_192, /** 192 bit (3-Key) 3DES */ APR_KEY_AES_128, /** 128 bit AES */ APR_KEY_AES_192, /** 192 bit AES */ APR_KEY_AES_256 /** 256 bit AES */ } apr_crypto_block_key_type_e; typedef enum { APR_MODE_NONE, /** An error condition */ APR_MODE_ECB, /** Electronic Code Book */ APR_MODE_CBC /** Cipher Block Chaining */ } apr_crypto_block_key_mode_e; /* These are opaque structs. Instantiation is up to each backend */ typedef struct apr_crypto_driver_t apr_crypto_driver_t; typedef struct apr_crypto_t apr_crypto_t; typedef struct apr_crypto_config_t apr_crypto_config_t; typedef struct apr_crypto_key_t apr_crypto_key_t; typedef struct apr_crypto_block_t apr_crypto_block_t; typedef struct apr_crypto_block_key_type_t { apr_crypto_block_key_type_e type; int keysize; int blocksize; int ivsize; } apr_crypto_block_key_type_t; typedef struct apr_crypto_block_key_mode_t { apr_crypto_block_key_mode_e mode; } apr_crypto_block_key_mode_t; typedef struct apr_crypto_passphrase_t { const char *pass; apr_size_t passLen; const unsigned char * salt; apr_size_t saltLen; int iterations; } apr_crypto_passphrase_t; typedef struct apr_crypto_secret_t { const unsigned char *secret; apr_size_t secretLen; } apr_crypto_secret_t; typedef enum { /** Key is derived from a passphrase */ APR_CRYPTO_KTYPE_PASSPHRASE = 1, /** Key is derived from a raw key */ APR_CRYPTO_KTYPE_SECRET = 2, } apr_crypto_key_type; typedef struct apr_crypto_key_rec_t { apr_crypto_key_type ktype; apr_crypto_block_key_type_e type; apr_crypto_block_key_mode_e mode; int pad; union { apr_crypto_passphrase_t passphrase; apr_crypto_secret_t secret; } k; } apr_crypto_key_rec_t; /** * @brief Perform once-only initialisation. Call once only. * * @param pool - pool to register any shutdown cleanups, etc * @return APR_NOTIMPL in case of no crypto support. */ APU_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool); /** * @brief Zero out the buffer provided when the pool is cleaned up. * * @param pool - pool to register the cleanup * @param buffer - buffer to zero out * @param size - size of the buffer to zero out */ APU_DECLARE(apr_status_t) apr_crypto_clear(apr_pool_t *pool, void *buffer, apr_size_t size); /** * @brief Always zero out the buffer provided, without being optimized out by * the compiler. * * @param buffer - buffer to zero out * @param size - size of the buffer to zero out */ APU_DECLARE(apr_status_t) apr_crypto_memzero(void *buffer, apr_size_t size); /** * @brief Timing attacks safe buffers comparison, where the executing time does * not depend on the bytes compared but solely on the number of bytes. * * @param buf1 - first buffer to compare * @param buf2 - second buffer to compare * @param size - size of the buffers to compare * @return 1 if the buffers are equals, 0 otherwise. */ APU_DECLARE(int) apr_crypto_equals(const void *buf1, const void *buf2, apr_size_t size); /** * @brief Get the driver struct for a name * * @param driver - pointer to driver struct. * @param name - driver name * @param params - array of initialisation parameters * @param result - result and error message on failure * @param pool - (process) pool to register cleanup * @return APR_SUCCESS for success * @return APR_ENOTIMPL for no driver (when DSO not enabled) * @return APR_EDSOOPEN if DSO driver file can't be opened * @return APR_ESYMNOTFOUND if the driver file doesn't contain a driver * @remarks NSS: the params can have "dir", "key3", "cert7" and "secmod" * keys, each followed by an equal sign and a value. Such key/value pairs can * be delimited by space or tab. If the value contains a space, surround the * whole key value pair in quotes: "dir=My Directory". * @remarks OpenSSL: currently no params are supported. */ APU_DECLARE(apr_status_t) apr_crypto_get_driver( const apr_crypto_driver_t **driver, const char *name, const char *params, const apu_err_t **result, apr_pool_t *pool); /** * @brief Return the name of the driver. * * @param driver - The driver in use. * @return The name of the driver. */ APU_DECLARE(const char *) apr_crypto_driver_name( const apr_crypto_driver_t *driver); /** * @brief Get the result of the last operation on a context. If the result * is NULL, the operation was successful. * @param result - the result structure * @param f - context pointer * @return APR_SUCCESS for success */ APU_DECLARE(apr_status_t) apr_crypto_error(const apu_err_t **result, const apr_crypto_t *f); /** * @brief Create a context for supporting encryption. Keys, certificates, * algorithms and other parameters will be set per context. More than * one context can be created at one time. A cleanup will be automatically * registered with the given pool to guarantee a graceful shutdown. * @param f - context pointer will be written here * @param driver - driver to use * @param params - array of key parameters * @param pool - process pool * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE * if the engine cannot be initialised. * @remarks NSS: currently no params are supported. * @remarks OpenSSL: the params can have "engine" as a key, followed by an equal * sign and a value. */ APU_DECLARE(apr_status_t) apr_crypto_make(apr_crypto_t **f, const apr_crypto_driver_t *driver, const char *params, apr_pool_t *pool); /** * @brief Get a hash table of key types, keyed by the name of the type against * a pointer to apr_crypto_block_key_type_t, which in turn begins with an * integer. * * @param types - hashtable of key types keyed to constants. * @param f - encryption context * @return APR_SUCCESS for success */ APU_DECLARE(apr_status_t) apr_crypto_get_block_key_types(apr_hash_t **types, const apr_crypto_t *f); /** * @brief Get a hash table of key modes, keyed by the name of the mode against * a pointer to apr_crypto_block_key_mode_t, which in turn begins with an * integer. * * @param modes - hashtable of key modes keyed to constants. * @param f - encryption context * @return APR_SUCCESS for success */ APU_DECLARE(apr_status_t) apr_crypto_get_block_key_modes(apr_hash_t **modes, const apr_crypto_t *f); /** * @brief Create a key from the provided secret or passphrase. The key is cleaned * up when the context is cleaned, and may be reused with multiple encryption * or decryption operations. * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If * *key is not NULL, *key must point at a previously created structure. * @param key The key returned, see note. * @param rec The key record, from which the key will be derived. * @param f The context to use. * @param p The pool to use. * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend * error occurred while generating the key. APR_ENOCIPHER if the type or mode * is not supported by the particular backend. APR_EKEYTYPE if the key type is * not known. APR_EPADDING if padding was requested but is not supported. * APR_ENOTIMPL if not implemented. */ APU_DECLARE(apr_status_t) apr_crypto_key(apr_crypto_key_t **key, const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p); /** * @brief Create a key from the given passphrase. By default, the PBKDF2 * algorithm is used to generate the key from the passphrase. It is expected * that the same pass phrase will generate the same key, regardless of the * backend crypto platform used. The key is cleaned up when the context * is cleaned, and may be reused with multiple encryption or decryption * operations. * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If * *key is not NULL, *key must point at a previously created structure. * @param key The key returned, see note. * @param ivSize The size of the initialisation vector will be returned, based * on whether an IV is relevant for this type of crypto. * @param pass The passphrase to use. * @param passLen The passphrase length in bytes * @param salt The salt to use. * @param saltLen The salt length in bytes * @param type 3DES_192, AES_128, AES_192, AES_256. * @param mode Electronic Code Book / Cipher Block Chaining. * @param doPad Pad if necessary. * @param iterations Number of iterations to use in algorithm * @param f The context to use. * @param p The pool to use. * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend * error occurred while generating the key. APR_ENOCIPHER if the type or mode * is not supported by the particular backend. APR_EKEYTYPE if the key type is * not known. APR_EPADDING if padding was requested but is not supported. * APR_ENOTIMPL if not implemented. * @deprecated Replaced by apr_crypto_key(). */ APU_DECLARE(apr_status_t) apr_crypto_passphrase(apr_crypto_key_t **key, apr_size_t *ivSize, const char *pass, apr_size_t passLen, const unsigned char * salt, apr_size_t saltLen, const apr_crypto_block_key_type_e type, const apr_crypto_block_key_mode_e mode, const int doPad, const int iterations, const apr_crypto_t *f, apr_pool_t *p); /** * @brief Initialise a context for encrypting arbitrary data using the given key. * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If * *ctx is not NULL, *ctx must point at a previously created structure. * @param ctx The block context returned, see note. * @param iv Optional initialisation vector. If the buffer pointed to is NULL, * an IV will be created at random, in space allocated from the pool. * If the buffer pointed to is not NULL, the IV in the buffer will be * used. * @param key The key structure to use. * @param blockSize The block size of the cipher. * @param p The pool to use. * @return Returns APR_ENOIV if an initialisation vector is required but not specified. * Returns APR_EINIT if the backend failed to initialise the context. Returns * APR_ENOTIMPL if not implemented. */ APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_init( apr_crypto_block_t **ctx, const unsigned char **iv, const apr_crypto_key_t *key, apr_size_t *blockSize, apr_pool_t *p); /** * @brief Encrypt data provided by in, write it to out. * @note The number of bytes written will be written to outlen. If * out is NULL, outlen will contain the maximum size of the * buffer needed to hold the data, including any data * generated by apr_crypto_block_encrypt_finish below. If *out points * to NULL, a buffer sufficiently large will be created from * the pool provided. If *out points to a not-NULL value, this * value will be used as a buffer instead. * @param out Address of a buffer to which data will be written, * see note. * @param outlen Length of the output will be written here. * @param in Address of the buffer to read. * @param inlen Length of the buffer to read. * @param ctx The block context to use. * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if * not implemented. */ APU_DECLARE(apr_status_t) apr_crypto_block_encrypt(unsigned char **out, apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, apr_crypto_block_t *ctx); /** * @brief Encrypt final data block, write it to out. * @note If necessary the final block will be written out after being * padded. Typically the final block will be written to the * same buffer used by apr_crypto_block_encrypt, offset by the * number of bytes returned as actually written by the * apr_crypto_block_encrypt() call. After this call, the context * is cleaned and can be reused by apr_crypto_block_encrypt_init(). * @param out Address of a buffer to which data will be written. This * buffer must already exist, and is usually the same * buffer used by apr_evp_crypt(). See note. * @param outlen Length of the output will be written here. * @param ctx The block context to use. * @return APR_ECRYPT if an error occurred. * @return APR_EPADDING if padding was enabled and the block was incorrectly * formatted. * @return APR_ENOTIMPL if not implemented. */ APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(unsigned char *out, apr_size_t *outlen, apr_crypto_block_t *ctx); /** * @brief Initialise a context for decrypting arbitrary data using the given key. * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If * *ctx is not NULL, *ctx must point at a previously created structure. * @param ctx The block context returned, see note. * @param blockSize The block size of the cipher. * @param iv Optional initialisation vector. * @param key The key structure to use. * @param p The pool to use. * @return Returns APR_ENOIV if an initialisation vector is required but not specified. * Returns APR_EINIT if the backend failed to initialise the context. Returns * APR_ENOTIMPL if not implemented. */ APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_init( apr_crypto_block_t **ctx, apr_size_t *blockSize, const unsigned char *iv, const apr_crypto_key_t *key, apr_pool_t *p); /** * @brief Decrypt data provided by in, write it to out. * @note The number of bytes written will be written to outlen. If * out is NULL, outlen will contain the maximum size of the * buffer needed to hold the data, including any data * generated by apr_crypto_block_decrypt_finish below. If *out points * to NULL, a buffer sufficiently large will be created from * the pool provided. If *out points to a not-NULL value, this * value will be used as a buffer instead. * @param out Address of a buffer to which data will be written, * see note. * @param outlen Length of the output will be written here. * @param in Address of the buffer to read. * @param inlen Length of the buffer to read. * @param ctx The block context to use. * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if * not implemented. */ APU_DECLARE(apr_status_t) apr_crypto_block_decrypt(unsigned char **out, apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, apr_crypto_block_t *ctx); /** * @brief Decrypt final data block, write it to out. * @note If necessary the final block will be written out after being * padded. Typically the final block will be written to the * same buffer used by apr_crypto_block_decrypt, offset by the * number of bytes returned as actually written by the * apr_crypto_block_decrypt() call. After this call, the context * is cleaned and can be reused by apr_crypto_block_decrypt_init(). * @param out Address of a buffer to which data will be written. This * buffer must already exist, and is usually the same * buffer used by apr_evp_crypt(). See note. * @param outlen Length of the output will be written here. * @param ctx The block context to use. * @return APR_ECRYPT if an error occurred. * @return APR_EPADDING if padding was enabled and the block was incorrectly * formatted. * @return APR_ENOTIMPL if not implemented. */ APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(unsigned char *out, apr_size_t *outlen, apr_crypto_block_t *ctx); /** * @brief Clean encryption / decryption context. * @note After cleanup, a context is free to be reused if necessary. * @param ctx The block context to use. * @return Returns APR_ENOTIMPL if not supported. */ APU_DECLARE(apr_status_t) apr_crypto_block_cleanup(apr_crypto_block_t *ctx); /** * @brief Clean encryption / decryption context. * @note After cleanup, a context is free to be reused if necessary. * @param f The context to use. * @return Returns APR_ENOTIMPL if not supported. */ APU_DECLARE(apr_status_t) apr_crypto_cleanup(apr_crypto_t *f); /** * @brief Shutdown the crypto library. * @note After shutdown, it is expected that the init function can be called again. * @param driver - driver to use * @return Returns APR_ENOTIMPL if not supported. */ APU_DECLARE(apr_status_t) apr_crypto_shutdown( const apr_crypto_driver_t *driver); #endif /* APU_HAVE_CRYPTO */ /** @} */ #ifdef __cplusplus } #endif #endif
Copyright ©2021 || Defacer Indonesia