whoami7 - Manager
:
/
opt
/
hc_python
/
lib
/
python3.8
/
site-packages
/
sentry_sdk
/
Upload File:
files >> //opt/hc_python/lib/python3.8/site-packages/sentry_sdk/metrics.py
import io import os import random import re import sys import threading import time import warnings import zlib from abc import ABC, abstractmethod from contextlib import contextmanager from datetime import datetime, timezone from functools import wraps, partial import sentry_sdk from sentry_sdk.utils import ( ContextVar, now, nanosecond_time, to_timestamp, serialize_frame, json_dumps, ) from sentry_sdk.envelope import Envelope, Item from sentry_sdk.tracing import ( TRANSACTION_SOURCE_ROUTE, TRANSACTION_SOURCE_VIEW, TRANSACTION_SOURCE_COMPONENT, TRANSACTION_SOURCE_TASK, ) from typing import TYPE_CHECKING if TYPE_CHECKING: from typing import Any from typing import Callable from typing import Dict from typing import Generator from typing import Iterable from typing import List from typing import Optional from typing import Set from typing import Tuple from typing import Union from sentry_sdk._types import BucketKey from sentry_sdk._types import DurationUnit from sentry_sdk._types import FlushedMetricValue from sentry_sdk._types import MeasurementUnit from sentry_sdk._types import MetricMetaKey from sentry_sdk._types import MetricTagValue from sentry_sdk._types import MetricTags from sentry_sdk._types import MetricTagsInternal from sentry_sdk._types import MetricType from sentry_sdk._types import MetricValue warnings.warn( "The sentry_sdk.metrics module is deprecated and will be removed in the next major release. " "Sentry will reject all metrics sent after October 7, 2024. " "Learn more: https://sentry.zendesk.com/hc/en-us/articles/26369339769883-Upcoming-API-Changes-to-Metrics", DeprecationWarning, stacklevel=2, ) _in_metrics = ContextVar("in_metrics", default=False) _set = set # set is shadowed below GOOD_TRANSACTION_SOURCES = frozenset( [ TRANSACTION_SOURCE_ROUTE, TRANSACTION_SOURCE_VIEW, TRANSACTION_SOURCE_COMPONENT, TRANSACTION_SOURCE_TASK, ] ) _sanitize_unit = partial(re.compile(r"[^a-zA-Z0-9_]+").sub, "") _sanitize_metric_key = partial(re.compile(r"[^a-zA-Z0-9_\-.]+").sub, "_") _sanitize_tag_key = partial(re.compile(r"[^a-zA-Z0-9_\-.\/]+").sub, "") def _sanitize_tag_value(value): # type: (str) -> str table = str.maketrans( { "\n": "\\n", "\r": "\\r", "\t": "\\t", "\\": "\\\\", "|": "\\u{7c}", ",": "\\u{2c}", } ) return value.translate(table) def get_code_location(stacklevel): # type: (int) -> Optional[Dict[str, Any]] try: frm = sys._getframe(stacklevel) except Exception: return None return serialize_frame( frm, include_local_variables=False, include_source_context=True ) @contextmanager def recursion_protection(): # type: () -> Generator[bool, None, None] """Enters recursion protection and returns the old flag.""" old_in_metrics = _in_metrics.get() _in_metrics.set(True) try: yield old_in_metrics finally: _in_metrics.set(old_in_metrics) def metrics_noop(func): # type: (Any) -> Any """Convenient decorator that uses `recursion_protection` to make a function a noop. """ @wraps(func) def new_func(*args, **kwargs): # type: (*Any, **Any) -> Any with recursion_protection() as in_metrics: if not in_metrics: return func(*args, **kwargs) return new_func class Metric(ABC): __slots__ = () @abstractmethod def __init__(self, first): # type: (MetricValue) -> None pass @property @abstractmethod def weight(self): # type: () -> int pass @abstractmethod def add(self, value): # type: (MetricValue) -> None pass @abstractmethod def serialize_value(self): # type: () -> Iterable[FlushedMetricValue] pass class CounterMetric(Metric): __slots__ = ("value",) def __init__( self, first # type: MetricValue ): # type: (...) -> None self.value = float(first) @property def weight(self): # type: (...) -> int return 1 def add( self, value # type: MetricValue ): # type: (...) -> None self.value += float(value) def serialize_value(self): # type: (...) -> Iterable[FlushedMetricValue] return (self.value,) class GaugeMetric(Metric): __slots__ = ( "last", "min", "max", "sum", "count", ) def __init__( self, first # type: MetricValue ): # type: (...) -> None first = float(first) self.last = first self.min = first self.max = first self.sum = first self.count = 1 @property def weight(self): # type: (...) -> int # Number of elements. return 5 def add( self, value # type: MetricValue ): # type: (...) -> None value = float(value) self.last = value self.min = min(self.min, value) self.max = max(self.max, value) self.sum += value self.count += 1 def serialize_value(self): # type: (...) -> Iterable[FlushedMetricValue] return ( self.last, self.min, self.max, self.sum, self.count, ) class DistributionMetric(Metric): __slots__ = ("value",) def __init__( self, first # type: MetricValue ): # type(...) -> None self.value = [float(first)] @property def weight(self): # type: (...) -> int return len(self.value) def add( self, value # type: MetricValue ): # type: (...) -> None self.value.append(float(value)) def serialize_value(self): # type: (...) -> Iterable[FlushedMetricValue] return self.value class SetMetric(Metric): __slots__ = ("value",) def __init__( self, first # type: MetricValue ): # type: (...) -> None self.value = {first} @property def weight(self): # type: (...) -> int return len(self.value) def add( self, value # type: MetricValue ): # type: (...) -> None self.value.add(value) def serialize_value(self): # type: (...) -> Iterable[FlushedMetricValue] def _hash(x): # type: (MetricValue) -> int if isinstance(x, str): return zlib.crc32(x.encode("utf-8")) & 0xFFFFFFFF return int(x) return (_hash(value) for value in self.value) def _encode_metrics(flushable_buckets): # type: (Iterable[Tuple[int, Dict[BucketKey, Metric]]]) -> bytes out = io.BytesIO() _write = out.write # Note on sanitization: we intentionally sanitize in emission (serialization) # and not during aggregation for performance reasons. This means that the # envelope can in fact have duplicate buckets stored. This is acceptable for # relay side emission and should not happen commonly. for timestamp, buckets in flushable_buckets: for bucket_key, metric in buckets.items(): metric_type, metric_name, metric_unit, metric_tags = bucket_key metric_name = _sanitize_metric_key(metric_name) metric_unit = _sanitize_unit(metric_unit) _write(metric_name.encode("utf-8")) _write(b"@") _write(metric_unit.encode("utf-8")) for serialized_value in metric.serialize_value(): _write(b":") _write(str(serialized_value).encode("utf-8")) _write(b"|") _write(metric_type.encode("ascii")) if metric_tags: _write(b"|#") first = True for tag_key, tag_value in metric_tags: tag_key = _sanitize_tag_key(tag_key) if not tag_key: continue if first: first = False else: _write(b",") _write(tag_key.encode("utf-8")) _write(b":") _write(_sanitize_tag_value(tag_value).encode("utf-8")) _write(b"|T") _write(str(timestamp).encode("ascii")) _write(b"\n") return out.getvalue() def _encode_locations(timestamp, code_locations): # type: (int, Iterable[Tuple[MetricMetaKey, Dict[str, Any]]]) -> bytes mapping = {} # type: Dict[str, List[Any]] for key, loc in code_locations: metric_type, name, unit = key mri = "{}:{}@{}".format( metric_type, _sanitize_metric_key(name), _sanitize_unit(unit) ) loc["type"] = "location" mapping.setdefault(mri, []).append(loc) return json_dumps({"timestamp": timestamp, "mapping": mapping}) METRIC_TYPES = { "c": CounterMetric, "g": GaugeMetric, "d": DistributionMetric, "s": SetMetric, } # type: dict[MetricType, type[Metric]] # some of these are dumb TIMING_FUNCTIONS = { "nanosecond": nanosecond_time, "microsecond": lambda: nanosecond_time() / 1000.0, "millisecond": lambda: nanosecond_time() / 1000000.0, "second": now, "minute": lambda: now() / 60.0, "hour": lambda: now() / 3600.0, "day": lambda: now() / 3600.0 / 24.0, "week": lambda: now() / 3600.0 / 24.0 / 7.0, } class LocalAggregator: __slots__ = ("_measurements",) def __init__(self): # type: (...) -> None self._measurements = ( {} ) # type: Dict[Tuple[str, MetricTagsInternal], Tuple[float, float, int, float]] def add( self, ty, # type: MetricType key, # type: str value, # type: float unit, # type: MeasurementUnit tags, # type: MetricTagsInternal ): # type: (...) -> None export_key = "%s:%s@%s" % (ty, key, unit) bucket_key = (export_key, tags) old = self._measurements.get(bucket_key) if old is not None: v_min, v_max, v_count, v_sum = old v_min = min(v_min, value) v_max = max(v_max, value) v_count += 1 v_sum += value else: v_min = v_max = v_sum = value v_count = 1 self._measurements[bucket_key] = (v_min, v_max, v_count, v_sum) def to_json(self): # type: (...) -> Dict[str, Any] rv = {} # type: Any for (export_key, tags), ( v_min, v_max, v_count, v_sum, ) in self._measurements.items(): rv.setdefault(export_key, []).append( { "tags": _tags_to_dict(tags), "min": v_min, "max": v_max, "count": v_count, "sum": v_sum, } ) return rv class MetricsAggregator: ROLLUP_IN_SECONDS = 10.0 MAX_WEIGHT = 100000 FLUSHER_SLEEP_TIME = 5.0 def __init__( self, capture_func, # type: Callable[[Envelope], None] enable_code_locations=False, # type: bool ): # type: (...) -> None self.buckets = {} # type: Dict[int, Any] self._enable_code_locations = enable_code_locations self._seen_locations = _set() # type: Set[Tuple[int, MetricMetaKey]] self._pending_locations = {} # type: Dict[int, List[Tuple[MetricMetaKey, Any]]] self._buckets_total_weight = 0 self._capture_func = capture_func self._running = True self._lock = threading.Lock() self._flush_event = threading.Event() # type: threading.Event self._force_flush = False # The aggregator shifts its flushing by up to an entire rollup window to # avoid multiple clients trampling on end of a 10 second window as all the # buckets are anchored to multiples of ROLLUP seconds. We randomize this # number once per aggregator boot to achieve some level of offsetting # across a fleet of deployed SDKs. Relay itself will also apply independent # jittering. self._flush_shift = random.random() * self.ROLLUP_IN_SECONDS self._flusher = None # type: Optional[threading.Thread] self._flusher_pid = None # type: Optional[int] def _ensure_thread(self): # type: (...) -> bool """For forking processes we might need to restart this thread. This ensures that our process actually has that thread running. """ if not self._running: return False pid = os.getpid() if self._flusher_pid == pid: return True with self._lock: # Recheck to make sure another thread didn't get here and start the # the flusher in the meantime if self._flusher_pid == pid: return True self._flusher_pid = pid self._flusher = threading.Thread(target=self._flush_loop) self._flusher.daemon = True try: self._flusher.start() except RuntimeError: # Unfortunately at this point the interpreter is in a state that no # longer allows us to spawn a thread and we have to bail. self._running = False return False return True def _flush_loop(self): # type: (...) -> None _in_metrics.set(True) while self._running or self._force_flush: if self._running: self._flush_event.wait(self.FLUSHER_SLEEP_TIME) self._flush() def _flush(self): # type: (...) -> None self._emit(self._flushable_buckets(), self._flushable_locations()) def _flushable_buckets(self): # type: (...) -> (Iterable[Tuple[int, Dict[BucketKey, Metric]]]) with self._lock: force_flush = self._force_flush cutoff = time.time() - self.ROLLUP_IN_SECONDS - self._flush_shift flushable_buckets = () # type: Iterable[Tuple[int, Dict[BucketKey, Metric]]] weight_to_remove = 0 if force_flush: flushable_buckets = self.buckets.items() self.buckets = {} self._buckets_total_weight = 0 self._force_flush = False else: flushable_buckets = [] for buckets_timestamp, buckets in self.buckets.items(): # If the timestamp of the bucket is newer that the rollup we want to skip it. if buckets_timestamp <= cutoff: flushable_buckets.append((buckets_timestamp, buckets)) # We will clear the elements while holding the lock, in order to avoid requesting it downstream again. for buckets_timestamp, buckets in flushable_buckets: for metric in buckets.values(): weight_to_remove += metric.weight del self.buckets[buckets_timestamp] self._buckets_total_weight -= weight_to_remove return flushable_buckets def _flushable_locations(self): # type: (...) -> Dict[int, List[Tuple[MetricMetaKey, Dict[str, Any]]]] with self._lock: locations = self._pending_locations self._pending_locations = {} return locations @metrics_noop def add( self, ty, # type: MetricType key, # type: str value, # type: MetricValue unit, # type: MeasurementUnit tags, # type: Optional[MetricTags] timestamp=None, # type: Optional[Union[float, datetime]] local_aggregator=None, # type: Optional[LocalAggregator] stacklevel=0, # type: Optional[int] ): # type: (...) -> None if not self._ensure_thread() or self._flusher is None: return None if timestamp is None: timestamp = time.time() elif isinstance(timestamp, datetime): timestamp = to_timestamp(timestamp) bucket_timestamp = int( (timestamp // self.ROLLUP_IN_SECONDS) * self.ROLLUP_IN_SECONDS ) serialized_tags = _serialize_tags(tags) bucket_key = ( ty, key, unit, serialized_tags, ) with self._lock: local_buckets = self.buckets.setdefault(bucket_timestamp, {}) metric = local_buckets.get(bucket_key) if metric is not None: previous_weight = metric.weight metric.add(value) else: metric = local_buckets[bucket_key] = METRIC_TYPES[ty](value) previous_weight = 0 added = metric.weight - previous_weight if stacklevel is not None: self.record_code_location(ty, key, unit, stacklevel + 2, timestamp) # Given the new weight we consider whether we want to force flush. self._consider_force_flush() # For sets, we only record that a value has been added to the set but not which one. # See develop docs: https://develop.sentry.dev/sdk/metrics/#sets if local_aggregator is not None: local_value = float(added if ty == "s" else value) local_aggregator.add(ty, key, local_value, unit, serialized_tags) def record_code_location( self, ty, # type: MetricType key, # type: str unit, # type: MeasurementUnit stacklevel, # type: int timestamp=None, # type: Optional[float] ): # type: (...) -> None if not self._enable_code_locations: return if timestamp is None: timestamp = time.time() meta_key = (ty, key, unit) start_of_day = datetime.fromtimestamp(timestamp, timezone.utc).replace( hour=0, minute=0, second=0, microsecond=0, tzinfo=None ) start_of_day = int(to_timestamp(start_of_day)) if (start_of_day, meta_key) not in self._seen_locations: self._seen_locations.add((start_of_day, meta_key)) loc = get_code_location(stacklevel + 3) if loc is not None: # Group metadata by day to make flushing more efficient. # There needs to be one envelope item per timestamp. self._pending_locations.setdefault(start_of_day, []).append( (meta_key, loc) ) @metrics_noop def need_code_location( self, ty, # type: MetricType key, # type: str unit, # type: MeasurementUnit timestamp, # type: float ): # type: (...) -> bool if self._enable_code_locations: return False meta_key = (ty, key, unit) start_of_day = datetime.fromtimestamp(timestamp, timezone.utc).replace( hour=0, minute=0, second=0, microsecond=0, tzinfo=None ) start_of_day = int(to_timestamp(start_of_day)) return (start_of_day, meta_key) not in self._seen_locations def kill(self): # type: (...) -> None if self._flusher is None: return self._running = False self._flush_event.set() self._flusher = None @metrics_noop def flush(self): # type: (...) -> None self._force_flush = True self._flush() def _consider_force_flush(self): # type: (...) -> None # It's important to acquire a lock around this method, since it will touch shared data structures. total_weight = len(self.buckets) + self._buckets_total_weight if total_weight >= self.MAX_WEIGHT: self._force_flush = True self._flush_event.set() def _emit( self, flushable_buckets, # type: (Iterable[Tuple[int, Dict[BucketKey, Metric]]]) code_locations, # type: Dict[int, List[Tuple[MetricMetaKey, Dict[str, Any]]]] ): # type: (...) -> Optional[Envelope] envelope = Envelope() if flushable_buckets: encoded_metrics = _encode_metrics(flushable_buckets) envelope.add_item(Item(payload=encoded_metrics, type="statsd")) for timestamp, locations in code_locations.items(): encoded_locations = _encode_locations(timestamp, locations) envelope.add_item(Item(payload=encoded_locations, type="metric_meta")) if envelope.items: self._capture_func(envelope) return envelope return None def _serialize_tags( tags, # type: Optional[MetricTags] ): # type: (...) -> MetricTagsInternal if not tags: return () rv = [] for key, value in tags.items(): # If the value is a collection, we want to flatten it. if isinstance(value, (list, tuple)): for inner_value in value: if inner_value is not None: rv.append((key, str(inner_value))) elif value is not None: rv.append((key, str(value))) # It's very important to sort the tags in order to obtain the # same bucket key. return tuple(sorted(rv)) def _tags_to_dict(tags): # type: (MetricTagsInternal) -> Dict[str, Any] rv = {} # type: Dict[str, Any] for tag_name, tag_value in tags: old_value = rv.get(tag_name) if old_value is not None: if isinstance(old_value, list): old_value.append(tag_value) else: rv[tag_name] = [old_value, tag_value] else: rv[tag_name] = tag_value return rv def _get_aggregator(): # type: () -> Optional[MetricsAggregator] client = sentry_sdk.get_client() return ( client.metrics_aggregator if client.is_active() and client.metrics_aggregator is not None else None ) def _get_aggregator_and_update_tags(key, value, unit, tags): # type: (str, Optional[MetricValue], MeasurementUnit, Optional[MetricTags]) -> Tuple[Optional[MetricsAggregator], Optional[LocalAggregator], Optional[MetricTags]] client = sentry_sdk.get_client() if not client.is_active() or client.metrics_aggregator is None: return None, None, tags updated_tags = dict(tags or ()) # type: Dict[str, MetricTagValue] updated_tags.setdefault("release", client.options["release"]) updated_tags.setdefault("environment", client.options["environment"]) scope = sentry_sdk.get_current_scope() local_aggregator = None # We go with the low-level API here to access transaction information as # this one is the same between just errors and errors + performance transaction_source = scope._transaction_info.get("source") if transaction_source in GOOD_TRANSACTION_SOURCES: transaction_name = scope._transaction if transaction_name: updated_tags.setdefault("transaction", transaction_name) if scope._span is not None: local_aggregator = scope._span._get_local_aggregator() experiments = client.options.get("_experiments", {}) before_emit_callback = experiments.get("before_emit_metric") if before_emit_callback is not None: with recursion_protection() as in_metrics: if not in_metrics: if not before_emit_callback(key, value, unit, updated_tags): return None, None, updated_tags return client.metrics_aggregator, local_aggregator, updated_tags def increment( key, # type: str value=1.0, # type: float unit="none", # type: MeasurementUnit tags=None, # type: Optional[MetricTags] timestamp=None, # type: Optional[Union[float, datetime]] stacklevel=0, # type: int ): # type: (...) -> None """Increments a counter.""" aggregator, local_aggregator, tags = _get_aggregator_and_update_tags( key, value, unit, tags ) if aggregator is not None: aggregator.add( "c", key, value, unit, tags, timestamp, local_aggregator, stacklevel ) # alias as incr is relatively common in python incr = increment class _Timing: def __init__( self, key, # type: str tags, # type: Optional[MetricTags] timestamp, # type: Optional[Union[float, datetime]] value, # type: Optional[float] unit, # type: DurationUnit stacklevel, # type: int ): # type: (...) -> None self.key = key self.tags = tags self.timestamp = timestamp self.value = value self.unit = unit self.entered = None # type: Optional[float] self._span = None # type: Optional[sentry_sdk.tracing.Span] self.stacklevel = stacklevel def _validate_invocation(self, context): # type: (str) -> None if self.value is not None: raise TypeError( "cannot use timing as %s when a value is provided" % context ) def __enter__(self): # type: (...) -> _Timing self.entered = TIMING_FUNCTIONS[self.unit]() self._validate_invocation("context-manager") self._span = sentry_sdk.start_span(op="metric.timing", name=self.key) if self.tags: for key, value in self.tags.items(): if isinstance(value, (tuple, list)): value = ",".join(sorted(map(str, value))) self._span.set_tag(key, value) self._span.__enter__() # report code locations here for better accuracy aggregator = _get_aggregator() if aggregator is not None: aggregator.record_code_location("d", self.key, self.unit, self.stacklevel) return self def __exit__(self, exc_type, exc_value, tb): # type: (Any, Any, Any) -> None assert self._span, "did not enter" aggregator, local_aggregator, tags = _get_aggregator_and_update_tags( self.key, self.value, self.unit, self.tags, ) if aggregator is not None: elapsed = TIMING_FUNCTIONS[self.unit]() - self.entered # type: ignore aggregator.add( "d", self.key, elapsed, self.unit, tags, self.timestamp, local_aggregator, None, # code locations are reported in __enter__ ) self._span.__exit__(exc_type, exc_value, tb) self._span = None def __call__(self, f): # type: (Any) -> Any self._validate_invocation("decorator") @wraps(f) def timed_func(*args, **kwargs): # type: (*Any, **Any) -> Any with timing( key=self.key, tags=self.tags, timestamp=self.timestamp, unit=self.unit, stacklevel=self.stacklevel + 1, ): return f(*args, **kwargs) return timed_func def timing( key, # type: str value=None, # type: Optional[float] unit="second", # type: DurationUnit tags=None, # type: Optional[MetricTags] timestamp=None, # type: Optional[Union[float, datetime]] stacklevel=0, # type: int ): # type: (...) -> _Timing """Emits a distribution with the time it takes to run the given code block. This method supports three forms of invocation: - when a `value` is provided, it functions similar to `distribution` but with - it can be used as a context manager - it can be used as a decorator """ if value is not None: aggregator, local_aggregator, tags = _get_aggregator_and_update_tags( key, value, unit, tags ) if aggregator is not None: aggregator.add( "d", key, value, unit, tags, timestamp, local_aggregator, stacklevel ) return _Timing(key, tags, timestamp, value, unit, stacklevel) def distribution( key, # type: str value, # type: float unit="none", # type: MeasurementUnit tags=None, # type: Optional[MetricTags] timestamp=None, # type: Optional[Union[float, datetime]] stacklevel=0, # type: int ): # type: (...) -> None """Emits a distribution.""" aggregator, local_aggregator, tags = _get_aggregator_and_update_tags( key, value, unit, tags ) if aggregator is not None: aggregator.add( "d", key, value, unit, tags, timestamp, local_aggregator, stacklevel ) def set( key, # type: str value, # type: Union[int, str] unit="none", # type: MeasurementUnit tags=None, # type: Optional[MetricTags] timestamp=None, # type: Optional[Union[float, datetime]] stacklevel=0, # type: int ): # type: (...) -> None """Emits a set.""" aggregator, local_aggregator, tags = _get_aggregator_and_update_tags( key, value, unit, tags ) if aggregator is not None: aggregator.add( "s", key, value, unit, tags, timestamp, local_aggregator, stacklevel ) def gauge( key, # type: str value, # type: float unit="none", # type: MeasurementUnit tags=None, # type: Optional[MetricTags] timestamp=None, # type: Optional[Union[float, datetime]] stacklevel=0, # type: int ): # type: (...) -> None """Emits a gauge.""" aggregator, local_aggregator, tags = _get_aggregator_and_update_tags( key, value, unit, tags ) if aggregator is not None: aggregator.add( "g", key, value, unit, tags, timestamp, local_aggregator, stacklevel )
Copyright ©2021 || Defacer Indonesia