whoami7 - Manager
:
/
opt
/
hc_python
/
lib
/
python3.8
/
site-packages
/
sqlalchemy
/
testing
/
Upload File:
files >> //opt/hc_python/lib/python3.8/site-packages/sqlalchemy/testing/util.py
# testing/util.py # Copyright (C) 2005-2024 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php # mypy: ignore-errors from __future__ import annotations from collections import deque import contextlib import decimal import gc from itertools import chain import random import sys from sys import getsizeof import time import types from typing import Any from . import config from . import mock from .. import inspect from ..engine import Connection from ..schema import Column from ..schema import DropConstraint from ..schema import DropTable from ..schema import ForeignKeyConstraint from ..schema import MetaData from ..schema import Table from ..sql import schema from ..sql.sqltypes import Integer from ..util import decorator from ..util import defaultdict from ..util import has_refcount_gc from ..util import inspect_getfullargspec if not has_refcount_gc: def non_refcount_gc_collect(*args): gc.collect() gc.collect() gc_collect = lazy_gc = non_refcount_gc_collect else: # assume CPython - straight gc.collect, lazy_gc() is a pass gc_collect = gc.collect def lazy_gc(): pass def picklers(): picklers = set() import pickle picklers.add(pickle) # yes, this thing needs this much testing for pickle_ in picklers: for protocol in range(-2, pickle.HIGHEST_PROTOCOL + 1): yield pickle_.loads, lambda d: pickle_.dumps(d, protocol) def random_choices(population, k=1): return random.choices(population, k=k) def round_decimal(value, prec): if isinstance(value, float): return round(value, prec) # can also use shift() here but that is 2.6 only return (value * decimal.Decimal("1" + "0" * prec)).to_integral( decimal.ROUND_FLOOR ) / pow(10, prec) class RandomSet(set): def __iter__(self): l = list(set.__iter__(self)) random.shuffle(l) return iter(l) def pop(self): index = random.randint(0, len(self) - 1) item = list(set.__iter__(self))[index] self.remove(item) return item def union(self, other): return RandomSet(set.union(self, other)) def difference(self, other): return RandomSet(set.difference(self, other)) def intersection(self, other): return RandomSet(set.intersection(self, other)) def copy(self): return RandomSet(self) def conforms_partial_ordering(tuples, sorted_elements): """True if the given sorting conforms to the given partial ordering.""" deps = defaultdict(set) for parent, child in tuples: deps[parent].add(child) for i, node in enumerate(sorted_elements): for n in sorted_elements[i:]: if node in deps[n]: return False else: return True def all_partial_orderings(tuples, elements): edges = defaultdict(set) for parent, child in tuples: edges[child].add(parent) def _all_orderings(elements): if len(elements) == 1: yield list(elements) else: for elem in elements: subset = set(elements).difference([elem]) if not subset.intersection(edges[elem]): for sub_ordering in _all_orderings(subset): yield [elem] + sub_ordering return iter(_all_orderings(elements)) def function_named(fn, name): """Return a function with a given __name__. Will assign to __name__ and return the original function if possible on the Python implementation, otherwise a new function will be constructed. This function should be phased out as much as possible in favor of @decorator. Tests that "generate" many named tests should be modernized. """ try: fn.__name__ = name except TypeError: fn = types.FunctionType( fn.__code__, fn.__globals__, name, fn.__defaults__, fn.__closure__ ) return fn def run_as_contextmanager(ctx, fn, *arg, **kw): """Run the given function under the given contextmanager, simulating the behavior of 'with' to support older Python versions. This is not necessary anymore as we have placed 2.6 as minimum Python version, however some tests are still using this structure. """ obj = ctx.__enter__() try: result = fn(obj, *arg, **kw) ctx.__exit__(None, None, None) return result except: exc_info = sys.exc_info() raise_ = ctx.__exit__(*exc_info) if not raise_: raise else: return raise_ def rowset(results): """Converts the results of sql execution into a plain set of column tuples. Useful for asserting the results of an unordered query. """ return {tuple(row) for row in results} def fail(msg): assert False, msg @decorator def provide_metadata(fn, *args, **kw): """Provide bound MetaData for a single test, dropping afterwards. Legacy; use the "metadata" pytest fixture. """ from . import fixtures metadata = schema.MetaData() self = args[0] prev_meta = getattr(self, "metadata", None) self.metadata = metadata try: return fn(*args, **kw) finally: # close out some things that get in the way of dropping tables. # when using the "metadata" fixture, there is a set ordering # of things that makes sure things are cleaned up in order, however # the simple "decorator" nature of this legacy function means # we have to hardcode some of that cleanup ahead of time. # close ORM sessions fixtures.close_all_sessions() # integrate with the "connection" fixture as there are many # tests where it is used along with provide_metadata cfc = fixtures.base._connection_fixture_connection if cfc: # TODO: this warning can be used to find all the places # this is used with connection fixture # warn("mixing legacy provide metadata with connection fixture") drop_all_tables_from_metadata(metadata, cfc) # as the provide_metadata fixture is often used with "testing.db", # when we do the drop we have to commit the transaction so that # the DB is actually updated as the CREATE would have been # committed cfc.get_transaction().commit() else: drop_all_tables_from_metadata(metadata, config.db) self.metadata = prev_meta def flag_combinations(*combinations): """A facade around @testing.combinations() oriented towards boolean keyword-based arguments. Basically generates a nice looking identifier based on the keywords and also sets up the argument names. E.g.:: @testing.flag_combinations( dict(lazy=False, passive=False), dict(lazy=True, passive=False), dict(lazy=False, passive=True), dict(lazy=False, passive=True, raiseload=True), ) would result in:: @testing.combinations( ('', False, False, False), ('lazy', True, False, False), ('lazy_passive', True, True, False), ('lazy_passive', True, True, True), id_='iaaa', argnames='lazy,passive,raiseload' ) """ keys = set() for d in combinations: keys.update(d) keys = sorted(keys) return config.combinations( *[ ("_".join(k for k in keys if d.get(k, False)),) + tuple(d.get(k, False) for k in keys) for d in combinations ], id_="i" + ("a" * len(keys)), argnames=",".join(keys), ) def lambda_combinations(lambda_arg_sets, **kw): args = inspect_getfullargspec(lambda_arg_sets) arg_sets = lambda_arg_sets(*[mock.Mock() for arg in args[0]]) def create_fixture(pos): def fixture(**kw): return lambda_arg_sets(**kw)[pos] fixture.__name__ = "fixture_%3.3d" % pos return fixture return config.combinations( *[(create_fixture(i),) for i in range(len(arg_sets))], **kw ) def resolve_lambda(__fn, **kw): """Given a no-arg lambda and a namespace, return a new lambda that has all the values filled in. This is used so that we can have module-level fixtures that refer to instance-level variables using lambdas. """ pos_args = inspect_getfullargspec(__fn)[0] pass_pos_args = {arg: kw.pop(arg) for arg in pos_args} glb = dict(__fn.__globals__) glb.update(kw) new_fn = types.FunctionType(__fn.__code__, glb) return new_fn(**pass_pos_args) def metadata_fixture(ddl="function"): """Provide MetaData for a pytest fixture.""" def decorate(fn): def run_ddl(self): metadata = self.metadata = schema.MetaData() try: result = fn(self, metadata) metadata.create_all(config.db) # TODO: # somehow get a per-function dml erase fixture here yield result finally: metadata.drop_all(config.db) return config.fixture(scope=ddl)(run_ddl) return decorate def force_drop_names(*names): """Force the given table names to be dropped after test complete, isolating for foreign key cycles """ @decorator def go(fn, *args, **kw): try: return fn(*args, **kw) finally: drop_all_tables(config.db, inspect(config.db), include_names=names) return go class adict(dict): """Dict keys available as attributes. Shadows.""" def __getattribute__(self, key): try: return self[key] except KeyError: return dict.__getattribute__(self, key) def __call__(self, *keys): return tuple([self[key] for key in keys]) get_all = __call__ def drop_all_tables_from_metadata(metadata, engine_or_connection): from . import engines def go(connection): engines.testing_reaper.prepare_for_drop_tables(connection) if not connection.dialect.supports_alter: from . import assertions with assertions.expect_warnings( "Can't sort tables", assert_=False ): metadata.drop_all(connection) else: metadata.drop_all(connection) if not isinstance(engine_or_connection, Connection): with engine_or_connection.begin() as connection: go(connection) else: go(engine_or_connection) def drop_all_tables( engine, inspector, schema=None, consider_schemas=(None,), include_names=None, ): if include_names is not None: include_names = set(include_names) if schema is not None: assert consider_schemas == ( None, ), "consider_schemas and schema are mutually exclusive" consider_schemas = (schema,) with engine.begin() as conn: for table_key, fkcs in reversed( inspector.sort_tables_on_foreign_key_dependency( consider_schemas=consider_schemas ) ): if table_key: if ( include_names is not None and table_key[1] not in include_names ): continue conn.execute( DropTable( Table(table_key[1], MetaData(), schema=table_key[0]) ) ) elif fkcs: if not engine.dialect.supports_alter: continue for t_key, fkc in fkcs: if ( include_names is not None and t_key[1] not in include_names ): continue tb = Table( t_key[1], MetaData(), Column("x", Integer), Column("y", Integer), schema=t_key[0], ) conn.execute( DropConstraint( ForeignKeyConstraint([tb.c.x], [tb.c.y], name=fkc) ) ) def teardown_events(event_cls): @decorator def decorate(fn, *arg, **kw): try: return fn(*arg, **kw) finally: event_cls._clear() return decorate def total_size(o): """Returns the approximate memory footprint an object and all of its contents. source: https://code.activestate.com/recipes/577504/ """ def dict_handler(d): return chain.from_iterable(d.items()) all_handlers = { tuple: iter, list: iter, deque: iter, dict: dict_handler, set: iter, frozenset: iter, } seen = set() # track which object id's have already been seen default_size = getsizeof(0) # estimate sizeof object without __sizeof__ def sizeof(o): if id(o) in seen: # do not double count the same object return 0 seen.add(id(o)) s = getsizeof(o, default_size) for typ, handler in all_handlers.items(): if isinstance(o, typ): s += sum(map(sizeof, handler(o))) break return s return sizeof(o) def count_cache_key_tuples(tup): """given a cache key tuple, counts how many instances of actual tuples are found. used to alert large jumps in cache key complexity. """ stack = [tup] sentinel = object() num_elements = 0 while stack: elem = stack.pop(0) if elem is sentinel: num_elements += 1 elif isinstance(elem, tuple): if elem: stack = list(elem) + [sentinel] + stack return num_elements @contextlib.contextmanager def skip_if_timeout(seconds: float, cleanup: Any = None): now = time.time() yield sec = time.time() - now if sec > seconds: try: cleanup() finally: config.skip_test( f"test took too long ({sec:.4f} seconds > {seconds})" )
Copyright ©2021 || Defacer Indonesia