whoami7 - Manager
:
/
opt
/
imunify360
/
venv
/
lib64
/
python3.11
/
site-packages
/
docutils
/
utils
/
math
/
Upload File:
files >> //opt/imunify360/venv/lib64/python3.11/site-packages/docutils/utils/math/unichar2tex.py
# LaTeX math to Unicode symbols translation table # for use with the translate() method of unicode objects. # Generated with ``write_unichar2tex.py`` from the data in # http://milde.users.sourceforge.net/LUCR/Math/ # Includes commands from: standard LaTeX, amssymb, amsmath uni2tex_table = { 0xa0: '~', 0xa3: '\\pounds ', 0xa5: '\\yen ', 0xa7: '\\S ', 0xac: '\\neg ', 0xb1: '\\pm ', 0xb6: '\\P ', 0xd7: '\\times ', 0xf0: '\\eth ', 0xf7: '\\div ', 0x131: '\\imath ', 0x237: '\\jmath ', 0x393: '\\Gamma ', 0x394: '\\Delta ', 0x398: '\\Theta ', 0x39b: '\\Lambda ', 0x39e: '\\Xi ', 0x3a0: '\\Pi ', 0x3a3: '\\Sigma ', 0x3a5: '\\Upsilon ', 0x3a6: '\\Phi ', 0x3a8: '\\Psi ', 0x3a9: '\\Omega ', 0x3b1: '\\alpha ', 0x3b2: '\\beta ', 0x3b3: '\\gamma ', 0x3b4: '\\delta ', 0x3b5: '\\varepsilon ', 0x3b6: '\\zeta ', 0x3b7: '\\eta ', 0x3b8: '\\theta ', 0x3b9: '\\iota ', 0x3ba: '\\kappa ', 0x3bb: '\\lambda ', 0x3bc: '\\mu ', 0x3bd: '\\nu ', 0x3be: '\\xi ', 0x3c0: '\\pi ', 0x3c1: '\\rho ', 0x3c2: '\\varsigma ', 0x3c3: '\\sigma ', 0x3c4: '\\tau ', 0x3c5: '\\upsilon ', 0x3c6: '\\varphi ', 0x3c7: '\\chi ', 0x3c8: '\\psi ', 0x3c9: '\\omega ', 0x3d1: '\\vartheta ', 0x3d5: '\\phi ', 0x3d6: '\\varpi ', 0x3dd: '\\digamma ', 0x3f0: '\\varkappa ', 0x3f1: '\\varrho ', 0x3f5: '\\epsilon ', 0x3f6: '\\backepsilon ', 0x2001: '\\quad ', 0x2003: '\\quad ', 0x2006: '\\, ', 0x2016: '\\| ', 0x2020: '\\dagger ', 0x2021: '\\ddagger ', 0x2022: '\\bullet ', 0x2026: '\\ldots ', 0x2032: '\\prime ', 0x2035: '\\backprime ', 0x205f: '\\: ', 0x2102: '\\mathbb{C}', 0x210b: '\\mathcal{H}', 0x210c: '\\mathfrak{H}', 0x210d: '\\mathbb{H}', 0x210f: '\\hslash ', 0x2110: '\\mathcal{I}', 0x2111: '\\Im ', 0x2112: '\\mathcal{L}', 0x2113: '\\ell ', 0x2115: '\\mathbb{N}', 0x2118: '\\wp ', 0x2119: '\\mathbb{P}', 0x211a: '\\mathbb{Q}', 0x211b: '\\mathcal{R}', 0x211c: '\\Re ', 0x211d: '\\mathbb{R}', 0x2124: '\\mathbb{Z}', 0x2127: '\\mho ', 0x2128: '\\mathfrak{Z}', 0x212c: '\\mathcal{B}', 0x212d: '\\mathfrak{C}', 0x2130: '\\mathcal{E}', 0x2131: '\\mathcal{F}', 0x2132: '\\Finv ', 0x2133: '\\mathcal{M}', 0x2135: '\\aleph ', 0x2136: '\\beth ', 0x2137: '\\gimel ', 0x2138: '\\daleth ', 0x2190: '\\leftarrow ', 0x2191: '\\uparrow ', 0x2192: '\\rightarrow ', 0x2193: '\\downarrow ', 0x2194: '\\leftrightarrow ', 0x2195: '\\updownarrow ', 0x2196: '\\nwarrow ', 0x2197: '\\nearrow ', 0x2198: '\\searrow ', 0x2199: '\\swarrow ', 0x219a: '\\nleftarrow ', 0x219b: '\\nrightarrow ', 0x219e: '\\twoheadleftarrow ', 0x21a0: '\\twoheadrightarrow ', 0x21a2: '\\leftarrowtail ', 0x21a3: '\\rightarrowtail ', 0x21a6: '\\mapsto ', 0x21a9: '\\hookleftarrow ', 0x21aa: '\\hookrightarrow ', 0x21ab: '\\looparrowleft ', 0x21ac: '\\looparrowright ', 0x21ad: '\\leftrightsquigarrow ', 0x21ae: '\\nleftrightarrow ', 0x21b0: '\\Lsh ', 0x21b1: '\\Rsh ', 0x21b6: '\\curvearrowleft ', 0x21b7: '\\curvearrowright ', 0x21ba: '\\circlearrowleft ', 0x21bb: '\\circlearrowright ', 0x21bc: '\\leftharpoonup ', 0x21bd: '\\leftharpoondown ', 0x21be: '\\upharpoonright ', 0x21bf: '\\upharpoonleft ', 0x21c0: '\\rightharpoonup ', 0x21c1: '\\rightharpoondown ', 0x21c2: '\\downharpoonright ', 0x21c3: '\\downharpoonleft ', 0x21c4: '\\rightleftarrows ', 0x21c6: '\\leftrightarrows ', 0x21c7: '\\leftleftarrows ', 0x21c8: '\\upuparrows ', 0x21c9: '\\rightrightarrows ', 0x21ca: '\\downdownarrows ', 0x21cb: '\\leftrightharpoons ', 0x21cc: '\\rightleftharpoons ', 0x21cd: '\\nLeftarrow ', 0x21ce: '\\nLeftrightarrow ', 0x21cf: '\\nRightarrow ', 0x21d0: '\\Leftarrow ', 0x21d1: '\\Uparrow ', 0x21d2: '\\Rightarrow ', 0x21d3: '\\Downarrow ', 0x21d4: '\\Leftrightarrow ', 0x21d5: '\\Updownarrow ', 0x21da: '\\Lleftarrow ', 0x21db: '\\Rrightarrow ', 0x21dd: '\\rightsquigarrow ', 0x21e0: '\\dashleftarrow ', 0x21e2: '\\dashrightarrow ', 0x2200: '\\forall ', 0x2201: '\\complement ', 0x2202: '\\partial ', 0x2203: '\\exists ', 0x2204: '\\nexists ', 0x2205: '\\emptyset ', 0x2207: '\\nabla ', 0x2208: '\\in ', 0x2209: '\\notin ', 0x220b: '\\ni ', 0x220f: '\\prod ', 0x2210: '\\coprod ', 0x2211: '\\sum ', 0x2212: '-', 0x2213: '\\mp ', 0x2214: '\\dotplus ', 0x2215: '\\slash ', 0x2216: '\\smallsetminus ', 0x2217: '\\ast ', 0x2218: '\\circ ', 0x2219: '\\bullet ', 0x221a: '\\surd ', 0x221b: '\\sqrt[3] ', 0x221c: '\\sqrt[4] ', 0x221d: '\\propto ', 0x221e: '\\infty ', 0x2220: '\\angle ', 0x2221: '\\measuredangle ', 0x2222: '\\sphericalangle ', 0x2223: '\\mid ', 0x2224: '\\nmid ', 0x2225: '\\parallel ', 0x2226: '\\nparallel ', 0x2227: '\\wedge ', 0x2228: '\\vee ', 0x2229: '\\cap ', 0x222a: '\\cup ', 0x222b: '\\int ', 0x222c: '\\iint ', 0x222d: '\\iiint ', 0x222e: '\\oint ', 0x2234: '\\therefore ', 0x2235: '\\because ', 0x2236: ':', 0x223c: '\\sim ', 0x223d: '\\backsim ', 0x2240: '\\wr ', 0x2241: '\\nsim ', 0x2242: '\\eqsim ', 0x2243: '\\simeq ', 0x2245: '\\cong ', 0x2247: '\\ncong ', 0x2248: '\\approx ', 0x224a: '\\approxeq ', 0x224d: '\\asymp ', 0x224e: '\\Bumpeq ', 0x224f: '\\bumpeq ', 0x2250: '\\doteq ', 0x2251: '\\Doteq ', 0x2252: '\\fallingdotseq ', 0x2253: '\\risingdotseq ', 0x2256: '\\eqcirc ', 0x2257: '\\circeq ', 0x225c: '\\triangleq ', 0x2260: '\\neq ', 0x2261: '\\equiv ', 0x2264: '\\leq ', 0x2265: '\\geq ', 0x2266: '\\leqq ', 0x2267: '\\geqq ', 0x2268: '\\lneqq ', 0x2269: '\\gneqq ', 0x226a: '\\ll ', 0x226b: '\\gg ', 0x226c: '\\between ', 0x226e: '\\nless ', 0x226f: '\\ngtr ', 0x2270: '\\nleq ', 0x2271: '\\ngeq ', 0x2272: '\\lesssim ', 0x2273: '\\gtrsim ', 0x2276: '\\lessgtr ', 0x2277: '\\gtrless ', 0x227a: '\\prec ', 0x227b: '\\succ ', 0x227c: '\\preccurlyeq ', 0x227d: '\\succcurlyeq ', 0x227e: '\\precsim ', 0x227f: '\\succsim ', 0x2280: '\\nprec ', 0x2281: '\\nsucc ', 0x2282: '\\subset ', 0x2283: '\\supset ', 0x2286: '\\subseteq ', 0x2287: '\\supseteq ', 0x2288: '\\nsubseteq ', 0x2289: '\\nsupseteq ', 0x228a: '\\subsetneq ', 0x228b: '\\supsetneq ', 0x228e: '\\uplus ', 0x228f: '\\sqsubset ', 0x2290: '\\sqsupset ', 0x2291: '\\sqsubseteq ', 0x2292: '\\sqsupseteq ', 0x2293: '\\sqcap ', 0x2294: '\\sqcup ', 0x2295: '\\oplus ', 0x2296: '\\ominus ', 0x2297: '\\otimes ', 0x2298: '\\oslash ', 0x2299: '\\odot ', 0x229a: '\\circledcirc ', 0x229b: '\\circledast ', 0x229d: '\\circleddash ', 0x229e: '\\boxplus ', 0x229f: '\\boxminus ', 0x22a0: '\\boxtimes ', 0x22a1: '\\boxdot ', 0x22a2: '\\vdash ', 0x22a3: '\\dashv ', 0x22a4: '\\top ', 0x22a5: '\\bot ', 0x22a7: '\\models ', 0x22a8: '\\vDash ', 0x22a9: '\\Vdash ', 0x22aa: '\\Vvdash ', 0x22ac: '\\nvdash ', 0x22ad: '\\nvDash ', 0x22ae: '\\nVdash ', 0x22af: '\\nVDash ', 0x22b2: '\\vartriangleleft ', 0x22b3: '\\vartriangleright ', 0x22b4: '\\trianglelefteq ', 0x22b5: '\\trianglerighteq ', 0x22b8: '\\multimap ', 0x22ba: '\\intercal ', 0x22bb: '\\veebar ', 0x22bc: '\\barwedge ', 0x22c0: '\\bigwedge ', 0x22c1: '\\bigvee ', 0x22c2: '\\bigcap ', 0x22c3: '\\bigcup ', 0x22c4: '\\diamond ', 0x22c5: '\\cdot ', 0x22c6: '\\star ', 0x22c7: '\\divideontimes ', 0x22c8: '\\bowtie ', 0x22c9: '\\ltimes ', 0x22ca: '\\rtimes ', 0x22cb: '\\leftthreetimes ', 0x22cc: '\\rightthreetimes ', 0x22cd: '\\backsimeq ', 0x22ce: '\\curlyvee ', 0x22cf: '\\curlywedge ', 0x22d0: '\\Subset ', 0x22d1: '\\Supset ', 0x22d2: '\\Cap ', 0x22d3: '\\Cup ', 0x22d4: '\\pitchfork ', 0x22d6: '\\lessdot ', 0x22d7: '\\gtrdot ', 0x22d8: '\\lll ', 0x22d9: '\\ggg ', 0x22da: '\\lesseqgtr ', 0x22db: '\\gtreqless ', 0x22de: '\\curlyeqprec ', 0x22df: '\\curlyeqsucc ', 0x22e0: '\\npreceq ', 0x22e1: '\\nsucceq ', 0x22e6: '\\lnsim ', 0x22e7: '\\gnsim ', 0x22e8: '\\precnsim ', 0x22e9: '\\succnsim ', 0x22ea: '\\ntriangleleft ', 0x22eb: '\\ntriangleright ', 0x22ec: '\\ntrianglelefteq ', 0x22ed: '\\ntrianglerighteq ', 0x22ee: '\\vdots ', 0x22ef: '\\cdots ', 0x22f1: '\\ddots ', 0x2308: '\\lceil ', 0x2309: '\\rceil ', 0x230a: '\\lfloor ', 0x230b: '\\rfloor ', 0x231c: '\\ulcorner ', 0x231d: '\\urcorner ', 0x231e: '\\llcorner ', 0x231f: '\\lrcorner ', 0x2322: '\\frown ', 0x2323: '\\smile ', 0x23aa: '\\bracevert ', 0x23b0: '\\lmoustache ', 0x23b1: '\\rmoustache ', 0x23d0: '\\arrowvert ', 0x23de: '\\overbrace ', 0x23df: '\\underbrace ', 0x24c7: '\\circledR ', 0x24c8: '\\circledS ', 0x25b2: '\\blacktriangle ', 0x25b3: '\\bigtriangleup ', 0x25b7: '\\triangleright ', 0x25bc: '\\blacktriangledown ', 0x25bd: '\\bigtriangledown ', 0x25c1: '\\triangleleft ', 0x25c7: '\\Diamond ', 0x25ca: '\\lozenge ', 0x25ef: '\\bigcirc ', 0x25fb: '\\square ', 0x25fc: '\\blacksquare ', 0x2605: '\\bigstar ', 0x2660: '\\spadesuit ', 0x2661: '\\heartsuit ', 0x2662: '\\diamondsuit ', 0x2663: '\\clubsuit ', 0x266d: '\\flat ', 0x266e: '\\natural ', 0x266f: '\\sharp ', 0x2713: '\\checkmark ', 0x2720: '\\maltese ', 0x27c2: '\\perp ', 0x27cb: '\\diagup ', 0x27cd: '\\diagdown ', 0x27e8: '\\langle ', 0x27e9: '\\rangle ', 0x27ee: '\\lgroup ', 0x27ef: '\\rgroup ', 0x27f5: '\\longleftarrow ', 0x27f6: '\\longrightarrow ', 0x27f7: '\\longleftrightarrow ', 0x27f8: '\\Longleftarrow ', 0x27f9: '\\Longrightarrow ', 0x27fa: '\\Longleftrightarrow ', 0x27fc: '\\longmapsto ', 0x29eb: '\\blacklozenge ', 0x29f5: '\\setminus ', 0x2a00: '\\bigodot ', 0x2a01: '\\bigoplus ', 0x2a02: '\\bigotimes ', 0x2a04: '\\biguplus ', 0x2a06: '\\bigsqcup ', 0x2a0c: '\\iiiint ', 0x2a3f: '\\amalg ', 0x2a5e: '\\doublebarwedge ', 0x2a7d: '\\leqslant ', 0x2a7e: '\\geqslant ', 0x2a85: '\\lessapprox ', 0x2a86: '\\gtrapprox ', 0x2a87: '\\lneq ', 0x2a88: '\\gneq ', 0x2a89: '\\lnapprox ', 0x2a8a: '\\gnapprox ', 0x2a8b: '\\lesseqqgtr ', 0x2a8c: '\\gtreqqless ', 0x2a95: '\\eqslantless ', 0x2a96: '\\eqslantgtr ', 0x2aaf: '\\preceq ', 0x2ab0: '\\succeq ', 0x2ab5: '\\precneqq ', 0x2ab6: '\\succneqq ', 0x2ab7: '\\precapprox ', 0x2ab8: '\\succapprox ', 0x2ab9: '\\precnapprox ', 0x2aba: '\\succnapprox ', 0x2ac5: '\\subseteqq ', 0x2ac6: '\\supseteqq ', 0x2acb: '\\subsetneqq ', 0x2acc: '\\supsetneqq ', 0x2b1c: '\\Box ', 0x1d400: '\\mathbf{A}', 0x1d401: '\\mathbf{B}', 0x1d402: '\\mathbf{C}', 0x1d403: '\\mathbf{D}', 0x1d404: '\\mathbf{E}', 0x1d405: '\\mathbf{F}', 0x1d406: '\\mathbf{G}', 0x1d407: '\\mathbf{H}', 0x1d408: '\\mathbf{I}', 0x1d409: '\\mathbf{J}', 0x1d40a: '\\mathbf{K}', 0x1d40b: '\\mathbf{L}', 0x1d40c: '\\mathbf{M}', 0x1d40d: '\\mathbf{N}', 0x1d40e: '\\mathbf{O}', 0x1d40f: '\\mathbf{P}', 0x1d410: '\\mathbf{Q}', 0x1d411: '\\mathbf{R}', 0x1d412: '\\mathbf{S}', 0x1d413: '\\mathbf{T}', 0x1d414: '\\mathbf{U}', 0x1d415: '\\mathbf{V}', 0x1d416: '\\mathbf{W}', 0x1d417: '\\mathbf{X}', 0x1d418: '\\mathbf{Y}', 0x1d419: '\\mathbf{Z}', 0x1d41a: '\\mathbf{a}', 0x1d41b: '\\mathbf{b}', 0x1d41c: '\\mathbf{c}', 0x1d41d: '\\mathbf{d}', 0x1d41e: '\\mathbf{e}', 0x1d41f: '\\mathbf{f}', 0x1d420: '\\mathbf{g}', 0x1d421: '\\mathbf{h}', 0x1d422: '\\mathbf{i}', 0x1d423: '\\mathbf{j}', 0x1d424: '\\mathbf{k}', 0x1d425: '\\mathbf{l}', 0x1d426: '\\mathbf{m}', 0x1d427: '\\mathbf{n}', 0x1d428: '\\mathbf{o}', 0x1d429: '\\mathbf{p}', 0x1d42a: '\\mathbf{q}', 0x1d42b: '\\mathbf{r}', 0x1d42c: '\\mathbf{s}', 0x1d42d: '\\mathbf{t}', 0x1d42e: '\\mathbf{u}', 0x1d42f: '\\mathbf{v}', 0x1d430: '\\mathbf{w}', 0x1d431: '\\mathbf{x}', 0x1d432: '\\mathbf{y}', 0x1d433: '\\mathbf{z}', 0x1d434: 'A', 0x1d435: 'B', 0x1d436: 'C', 0x1d437: 'D', 0x1d438: 'E', 0x1d439: 'F', 0x1d43a: 'G', 0x1d43b: 'H', 0x1d43c: 'I', 0x1d43d: 'J', 0x1d43e: 'K', 0x1d43f: 'L', 0x1d440: 'M', 0x1d441: 'N', 0x1d442: 'O', 0x1d443: 'P', 0x1d444: 'Q', 0x1d445: 'R', 0x1d446: 'S', 0x1d447: 'T', 0x1d448: 'U', 0x1d449: 'V', 0x1d44a: 'W', 0x1d44b: 'X', 0x1d44c: 'Y', 0x1d44d: 'Z', 0x1d44e: 'a', 0x1d44f: 'b', 0x1d450: 'c', 0x1d451: 'd', 0x1d452: 'e', 0x1d453: 'f', 0x1d454: 'g', 0x1d456: 'i', 0x1d457: 'j', 0x1d458: 'k', 0x1d459: 'l', 0x1d45a: 'm', 0x1d45b: 'n', 0x1d45c: 'o', 0x1d45d: 'p', 0x1d45e: 'q', 0x1d45f: 'r', 0x1d460: 's', 0x1d461: 't', 0x1d462: 'u', 0x1d463: 'v', 0x1d464: 'w', 0x1d465: 'x', 0x1d466: 'y', 0x1d467: 'z', 0x1d49c: '\\mathcal{A}', 0x1d49e: '\\mathcal{C}', 0x1d49f: '\\mathcal{D}', 0x1d4a2: '\\mathcal{G}', 0x1d4a5: '\\mathcal{J}', 0x1d4a6: '\\mathcal{K}', 0x1d4a9: '\\mathcal{N}', 0x1d4aa: '\\mathcal{O}', 0x1d4ab: '\\mathcal{P}', 0x1d4ac: '\\mathcal{Q}', 0x1d4ae: '\\mathcal{S}', 0x1d4af: '\\mathcal{T}', 0x1d4b0: '\\mathcal{U}', 0x1d4b1: '\\mathcal{V}', 0x1d4b2: '\\mathcal{W}', 0x1d4b3: '\\mathcal{X}', 0x1d4b4: '\\mathcal{Y}', 0x1d4b5: '\\mathcal{Z}', 0x1d504: '\\mathfrak{A}', 0x1d505: '\\mathfrak{B}', 0x1d507: '\\mathfrak{D}', 0x1d508: '\\mathfrak{E}', 0x1d509: '\\mathfrak{F}', 0x1d50a: '\\mathfrak{G}', 0x1d50d: '\\mathfrak{J}', 0x1d50e: '\\mathfrak{K}', 0x1d50f: '\\mathfrak{L}', 0x1d510: '\\mathfrak{M}', 0x1d511: '\\mathfrak{N}', 0x1d512: '\\mathfrak{O}', 0x1d513: '\\mathfrak{P}', 0x1d514: '\\mathfrak{Q}', 0x1d516: '\\mathfrak{S}', 0x1d517: '\\mathfrak{T}', 0x1d518: '\\mathfrak{U}', 0x1d519: '\\mathfrak{V}', 0x1d51a: '\\mathfrak{W}', 0x1d51b: '\\mathfrak{X}', 0x1d51c: '\\mathfrak{Y}', 0x1d51e: '\\mathfrak{a}', 0x1d51f: '\\mathfrak{b}', 0x1d520: '\\mathfrak{c}', 0x1d521: '\\mathfrak{d}', 0x1d522: '\\mathfrak{e}', 0x1d523: '\\mathfrak{f}', 0x1d524: '\\mathfrak{g}', 0x1d525: '\\mathfrak{h}', 0x1d526: '\\mathfrak{i}', 0x1d527: '\\mathfrak{j}', 0x1d528: '\\mathfrak{k}', 0x1d529: '\\mathfrak{l}', 0x1d52a: '\\mathfrak{m}', 0x1d52b: '\\mathfrak{n}', 0x1d52c: '\\mathfrak{o}', 0x1d52d: '\\mathfrak{p}', 0x1d52e: '\\mathfrak{q}', 0x1d52f: '\\mathfrak{r}', 0x1d530: '\\mathfrak{s}', 0x1d531: '\\mathfrak{t}', 0x1d532: '\\mathfrak{u}', 0x1d533: '\\mathfrak{v}', 0x1d534: '\\mathfrak{w}', 0x1d535: '\\mathfrak{x}', 0x1d536: '\\mathfrak{y}', 0x1d537: '\\mathfrak{z}', 0x1d538: '\\mathbb{A}', 0x1d539: '\\mathbb{B}', 0x1d53b: '\\mathbb{D}', 0x1d53c: '\\mathbb{E}', 0x1d53d: '\\mathbb{F}', 0x1d53e: '\\mathbb{G}', 0x1d540: '\\mathbb{I}', 0x1d541: '\\mathbb{J}', 0x1d542: '\\mathbb{K}', 0x1d543: '\\mathbb{L}', 0x1d544: '\\mathbb{M}', 0x1d546: '\\mathbb{O}', 0x1d54a: '\\mathbb{S}', 0x1d54b: '\\mathbb{T}', 0x1d54c: '\\mathbb{U}', 0x1d54d: '\\mathbb{V}', 0x1d54e: '\\mathbb{W}', 0x1d54f: '\\mathbb{X}', 0x1d550: '\\mathbb{Y}', 0x1d55c: '\\Bbbk ', 0x1d5a0: '\\mathsf{A}', 0x1d5a1: '\\mathsf{B}', 0x1d5a2: '\\mathsf{C}', 0x1d5a3: '\\mathsf{D}', 0x1d5a4: '\\mathsf{E}', 0x1d5a5: '\\mathsf{F}', 0x1d5a6: '\\mathsf{G}', 0x1d5a7: '\\mathsf{H}', 0x1d5a8: '\\mathsf{I}', 0x1d5a9: '\\mathsf{J}', 0x1d5aa: '\\mathsf{K}', 0x1d5ab: '\\mathsf{L}', 0x1d5ac: '\\mathsf{M}', 0x1d5ad: '\\mathsf{N}', 0x1d5ae: '\\mathsf{O}', 0x1d5af: '\\mathsf{P}', 0x1d5b0: '\\mathsf{Q}', 0x1d5b1: '\\mathsf{R}', 0x1d5b2: '\\mathsf{S}', 0x1d5b3: '\\mathsf{T}', 0x1d5b4: '\\mathsf{U}', 0x1d5b5: '\\mathsf{V}', 0x1d5b6: '\\mathsf{W}', 0x1d5b7: '\\mathsf{X}', 0x1d5b8: '\\mathsf{Y}', 0x1d5b9: '\\mathsf{Z}', 0x1d5ba: '\\mathsf{a}', 0x1d5bb: '\\mathsf{b}', 0x1d5bc: '\\mathsf{c}', 0x1d5bd: '\\mathsf{d}', 0x1d5be: '\\mathsf{e}', 0x1d5bf: '\\mathsf{f}', 0x1d5c0: '\\mathsf{g}', 0x1d5c1: '\\mathsf{h}', 0x1d5c2: '\\mathsf{i}', 0x1d5c3: '\\mathsf{j}', 0x1d5c4: '\\mathsf{k}', 0x1d5c5: '\\mathsf{l}', 0x1d5c6: '\\mathsf{m}', 0x1d5c7: '\\mathsf{n}', 0x1d5c8: '\\mathsf{o}', 0x1d5c9: '\\mathsf{p}', 0x1d5ca: '\\mathsf{q}', 0x1d5cb: '\\mathsf{r}', 0x1d5cc: '\\mathsf{s}', 0x1d5cd: '\\mathsf{t}', 0x1d5ce: '\\mathsf{u}', 0x1d5cf: '\\mathsf{v}', 0x1d5d0: '\\mathsf{w}', 0x1d5d1: '\\mathsf{x}', 0x1d5d2: '\\mathsf{y}', 0x1d5d3: '\\mathsf{z}', 0x1d670: '\\mathtt{A}', 0x1d671: '\\mathtt{B}', 0x1d672: '\\mathtt{C}', 0x1d673: '\\mathtt{D}', 0x1d674: '\\mathtt{E}', 0x1d675: '\\mathtt{F}', 0x1d676: '\\mathtt{G}', 0x1d677: '\\mathtt{H}', 0x1d678: '\\mathtt{I}', 0x1d679: '\\mathtt{J}', 0x1d67a: '\\mathtt{K}', 0x1d67b: '\\mathtt{L}', 0x1d67c: '\\mathtt{M}', 0x1d67d: '\\mathtt{N}', 0x1d67e: '\\mathtt{O}', 0x1d67f: '\\mathtt{P}', 0x1d680: '\\mathtt{Q}', 0x1d681: '\\mathtt{R}', 0x1d682: '\\mathtt{S}', 0x1d683: '\\mathtt{T}', 0x1d684: '\\mathtt{U}', 0x1d685: '\\mathtt{V}', 0x1d686: '\\mathtt{W}', 0x1d687: '\\mathtt{X}', 0x1d688: '\\mathtt{Y}', 0x1d689: '\\mathtt{Z}', 0x1d68a: '\\mathtt{a}', 0x1d68b: '\\mathtt{b}', 0x1d68c: '\\mathtt{c}', 0x1d68d: '\\mathtt{d}', 0x1d68e: '\\mathtt{e}', 0x1d68f: '\\mathtt{f}', 0x1d690: '\\mathtt{g}', 0x1d691: '\\mathtt{h}', 0x1d692: '\\mathtt{i}', 0x1d693: '\\mathtt{j}', 0x1d694: '\\mathtt{k}', 0x1d695: '\\mathtt{l}', 0x1d696: '\\mathtt{m}', 0x1d697: '\\mathtt{n}', 0x1d698: '\\mathtt{o}', 0x1d699: '\\mathtt{p}', 0x1d69a: '\\mathtt{q}', 0x1d69b: '\\mathtt{r}', 0x1d69c: '\\mathtt{s}', 0x1d69d: '\\mathtt{t}', 0x1d69e: '\\mathtt{u}', 0x1d69f: '\\mathtt{v}', 0x1d6a0: '\\mathtt{w}', 0x1d6a1: '\\mathtt{x}', 0x1d6a2: '\\mathtt{y}', 0x1d6a3: '\\mathtt{z}', 0x1d6a4: '\\imath ', 0x1d6a5: '\\jmath ', 0x1d6aa: '\\mathbf{\\Gamma}', 0x1d6ab: '\\mathbf{\\Delta}', 0x1d6af: '\\mathbf{\\Theta}', 0x1d6b2: '\\mathbf{\\Lambda}', 0x1d6b5: '\\mathbf{\\Xi}', 0x1d6b7: '\\mathbf{\\Pi}', 0x1d6ba: '\\mathbf{\\Sigma}', 0x1d6bc: '\\mathbf{\\Upsilon}', 0x1d6bd: '\\mathbf{\\Phi}', 0x1d6bf: '\\mathbf{\\Psi}', 0x1d6c0: '\\mathbf{\\Omega}', 0x1d6e4: '\\mathit{\\Gamma}', 0x1d6e5: '\\mathit{\\Delta}', 0x1d6e9: '\\mathit{\\Theta}', 0x1d6ec: '\\mathit{\\Lambda}', 0x1d6ef: '\\mathit{\\Xi}', 0x1d6f1: '\\mathit{\\Pi}', 0x1d6f4: '\\mathit{\\Sigma}', 0x1d6f6: '\\mathit{\\Upsilon}', 0x1d6f7: '\\mathit{\\Phi}', 0x1d6f9: '\\mathit{\\Psi}', 0x1d6fa: '\\mathit{\\Omega}', 0x1d6fc: '\\alpha ', 0x1d6fd: '\\beta ', 0x1d6fe: '\\gamma ', 0x1d6ff: '\\delta ', 0x1d700: '\\varepsilon ', 0x1d701: '\\zeta ', 0x1d702: '\\eta ', 0x1d703: '\\theta ', 0x1d704: '\\iota ', 0x1d705: '\\kappa ', 0x1d706: '\\lambda ', 0x1d707: '\\mu ', 0x1d708: '\\nu ', 0x1d709: '\\xi ', 0x1d70b: '\\pi ', 0x1d70c: '\\rho ', 0x1d70d: '\\varsigma ', 0x1d70e: '\\sigma ', 0x1d70f: '\\tau ', 0x1d710: '\\upsilon ', 0x1d711: '\\varphi ', 0x1d712: '\\chi ', 0x1d713: '\\psi ', 0x1d714: '\\omega ', 0x1d715: '\\partial ', 0x1d716: '\\epsilon ', 0x1d717: '\\vartheta ', 0x1d718: '\\varkappa ', 0x1d719: '\\phi ', 0x1d71a: '\\varrho ', 0x1d71b: '\\varpi ', 0x1d7ce: '\\mathbf{0}', 0x1d7cf: '\\mathbf{1}', 0x1d7d0: '\\mathbf{2}', 0x1d7d1: '\\mathbf{3}', 0x1d7d2: '\\mathbf{4}', 0x1d7d3: '\\mathbf{5}', 0x1d7d4: '\\mathbf{6}', 0x1d7d5: '\\mathbf{7}', 0x1d7d6: '\\mathbf{8}', 0x1d7d7: '\\mathbf{9}', 0x1d7e2: '\\mathsf{0}', 0x1d7e3: '\\mathsf{1}', 0x1d7e4: '\\mathsf{2}', 0x1d7e5: '\\mathsf{3}', 0x1d7e6: '\\mathsf{4}', 0x1d7e7: '\\mathsf{5}', 0x1d7e8: '\\mathsf{6}', 0x1d7e9: '\\mathsf{7}', 0x1d7ea: '\\mathsf{8}', 0x1d7eb: '\\mathsf{9}', 0x1d7f6: '\\mathtt{0}', 0x1d7f7: '\\mathtt{1}', 0x1d7f8: '\\mathtt{2}', 0x1d7f9: '\\mathtt{3}', 0x1d7fa: '\\mathtt{4}', 0x1d7fb: '\\mathtt{5}', 0x1d7fc: '\\mathtt{6}', 0x1d7fd: '\\mathtt{7}', 0x1d7fe: '\\mathtt{8}', 0x1d7ff: '\\mathtt{9}', }
Copyright ©2021 || Defacer Indonesia