whoami7 - Manager
:
/
proc
/
self
/
root
/
proc
/
self
/
root
/
opt
/
hc_python
/
lib64
/
python3.8
/
site-packages
/
pydantic
/
v1
/
Upload File:
files >> //proc/self/root/proc/self/root/opt/hc_python/lib64/python3.8/site-packages/pydantic/v1/json.py
import datetime from collections import deque from decimal import Decimal from enum import Enum from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network from pathlib import Path from re import Pattern from types import GeneratorType from typing import Any, Callable, Dict, Type, Union from uuid import UUID from pydantic.v1.color import Color from pydantic.v1.networks import NameEmail from pydantic.v1.types import SecretBytes, SecretStr __all__ = 'pydantic_encoder', 'custom_pydantic_encoder', 'timedelta_isoformat' def isoformat(o: Union[datetime.date, datetime.time]) -> str: return o.isoformat() def decimal_encoder(dec_value: Decimal) -> Union[int, float]: """ Encodes a Decimal as int of there's no exponent, otherwise float This is useful when we use ConstrainedDecimal to represent Numeric(x,0) where a integer (but not int typed) is used. Encoding this as a float results in failed round-tripping between encode and parse. Our Id type is a prime example of this. >>> decimal_encoder(Decimal("1.0")) 1.0 >>> decimal_encoder(Decimal("1")) 1 """ if dec_value.as_tuple().exponent >= 0: return int(dec_value) else: return float(dec_value) ENCODERS_BY_TYPE: Dict[Type[Any], Callable[[Any], Any]] = { bytes: lambda o: o.decode(), Color: str, datetime.date: isoformat, datetime.datetime: isoformat, datetime.time: isoformat, datetime.timedelta: lambda td: td.total_seconds(), Decimal: decimal_encoder, Enum: lambda o: o.value, frozenset: list, deque: list, GeneratorType: list, IPv4Address: str, IPv4Interface: str, IPv4Network: str, IPv6Address: str, IPv6Interface: str, IPv6Network: str, NameEmail: str, Path: str, Pattern: lambda o: o.pattern, SecretBytes: str, SecretStr: str, set: list, UUID: str, } def pydantic_encoder(obj: Any) -> Any: from dataclasses import asdict, is_dataclass from pydantic.v1.main import BaseModel if isinstance(obj, BaseModel): return obj.dict() elif is_dataclass(obj): return asdict(obj) # Check the class type and its superclasses for a matching encoder for base in obj.__class__.__mro__[:-1]: try: encoder = ENCODERS_BY_TYPE[base] except KeyError: continue return encoder(obj) else: # We have exited the for loop without finding a suitable encoder raise TypeError(f"Object of type '{obj.__class__.__name__}' is not JSON serializable") def custom_pydantic_encoder(type_encoders: Dict[Any, Callable[[Type[Any]], Any]], obj: Any) -> Any: # Check the class type and its superclasses for a matching encoder for base in obj.__class__.__mro__[:-1]: try: encoder = type_encoders[base] except KeyError: continue return encoder(obj) else: # We have exited the for loop without finding a suitable encoder return pydantic_encoder(obj) def timedelta_isoformat(td: datetime.timedelta) -> str: """ ISO 8601 encoding for Python timedelta object. """ minutes, seconds = divmod(td.seconds, 60) hours, minutes = divmod(minutes, 60) return f'{"-" if td.days < 0 else ""}P{abs(td.days)}DT{hours:d}H{minutes:d}M{seconds:d}.{td.microseconds:06d}S'
Copyright ©2021 || Defacer Indonesia