whoami7 - Manager
:
/
proc
/
self
/
root
/
proc
/
self
/
root
/
opt
/
hc_python
/
lib64
/
python3.8
/
site-packages
/
pydantic
/
v1
/
Upload File:
files >> //proc/self/root/proc/self/root/opt/hc_python/lib64/python3.8/site-packages/pydantic/v1/tools.py
import json from functools import lru_cache from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Optional, Type, TypeVar, Union from pydantic.v1.parse import Protocol, load_file, load_str_bytes from pydantic.v1.types import StrBytes from pydantic.v1.typing import display_as_type __all__ = ('parse_file_as', 'parse_obj_as', 'parse_raw_as', 'schema_of', 'schema_json_of') NameFactory = Union[str, Callable[[Type[Any]], str]] if TYPE_CHECKING: from pydantic.v1.typing import DictStrAny def _generate_parsing_type_name(type_: Any) -> str: return f'ParsingModel[{display_as_type(type_)}]' @lru_cache(maxsize=2048) def _get_parsing_type(type_: Any, *, type_name: Optional[NameFactory] = None) -> Any: from pydantic.v1.main import create_model if type_name is None: type_name = _generate_parsing_type_name if not isinstance(type_name, str): type_name = type_name(type_) return create_model(type_name, __root__=(type_, ...)) T = TypeVar('T') def parse_obj_as(type_: Type[T], obj: Any, *, type_name: Optional[NameFactory] = None) -> T: model_type = _get_parsing_type(type_, type_name=type_name) # type: ignore[arg-type] return model_type(__root__=obj).__root__ def parse_file_as( type_: Type[T], path: Union[str, Path], *, content_type: str = None, encoding: str = 'utf8', proto: Protocol = None, allow_pickle: bool = False, json_loads: Callable[[str], Any] = json.loads, type_name: Optional[NameFactory] = None, ) -> T: obj = load_file( path, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, json_loads=json_loads, ) return parse_obj_as(type_, obj, type_name=type_name) def parse_raw_as( type_: Type[T], b: StrBytes, *, content_type: str = None, encoding: str = 'utf8', proto: Protocol = None, allow_pickle: bool = False, json_loads: Callable[[str], Any] = json.loads, type_name: Optional[NameFactory] = None, ) -> T: obj = load_str_bytes( b, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, json_loads=json_loads, ) return parse_obj_as(type_, obj, type_name=type_name) def schema_of(type_: Any, *, title: Optional[NameFactory] = None, **schema_kwargs: Any) -> 'DictStrAny': """Generate a JSON schema (as dict) for the passed model or dynamically generated one""" return _get_parsing_type(type_, type_name=title).schema(**schema_kwargs) def schema_json_of(type_: Any, *, title: Optional[NameFactory] = None, **schema_json_kwargs: Any) -> str: """Generate a JSON schema (as JSON) for the passed model or dynamically generated one""" return _get_parsing_type(type_, type_name=title).schema_json(**schema_json_kwargs)
Copyright ©2021 || Defacer Indonesia