whoami7 - Manager
:
/
home
/
papecmvm
/
public_html
/
application
/
libraries
/
PHPExcel
/
Shared
/
trend
/
Upload File:
files >> /home/papecmvm/public_html/application/libraries/PHPExcel/Shared/trend/bestFitClass.php
<?php /** * PHPExcel_Best_Fit * * Copyright (c) 2006 - 2015 PHPExcel * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * @category PHPExcel * @package PHPExcel_Shared_Trend * @copyright Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel) * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL * @version ##VERSION##, ##DATE## */ class PHPExcel_Best_Fit { /** * Indicator flag for a calculation error * * @var boolean **/ protected $error = false; /** * Algorithm type to use for best-fit * * @var string **/ protected $bestFitType = 'undetermined'; /** * Number of entries in the sets of x- and y-value arrays * * @var int **/ protected $valueCount = 0; /** * X-value dataseries of values * * @var float[] **/ protected $xValues = array(); /** * Y-value dataseries of values * * @var float[] **/ protected $yValues = array(); /** * Flag indicating whether values should be adjusted to Y=0 * * @var boolean **/ protected $adjustToZero = false; /** * Y-value series of best-fit values * * @var float[] **/ protected $yBestFitValues = array(); protected $goodnessOfFit = 1; protected $stdevOfResiduals = 0; protected $covariance = 0; protected $correlation = 0; protected $SSRegression = 0; protected $SSResiduals = 0; protected $DFResiduals = 0; protected $f = 0; protected $slope = 0; protected $slopeSE = 0; protected $intersect = 0; protected $intersectSE = 0; protected $xOffset = 0; protected $yOffset = 0; public function getError() { return $this->error; } public function getBestFitType() { return $this->bestFitType; } /** * Return the Y-Value for a specified value of X * * @param float $xValue X-Value * @return float Y-Value */ public function getValueOfYForX($xValue) { return false; } /** * Return the X-Value for a specified value of Y * * @param float $yValue Y-Value * @return float X-Value */ public function getValueOfXForY($yValue) { return false; } /** * Return the original set of X-Values * * @return float[] X-Values */ public function getXValues() { return $this->xValues; } /** * Return the Equation of the best-fit line * * @param int $dp Number of places of decimal precision to display * @return string */ public function getEquation($dp = 0) { return false; } /** * Return the Slope of the line * * @param int $dp Number of places of decimal precision to display * @return string */ public function getSlope($dp = 0) { if ($dp != 0) { return round($this->slope, $dp); } return $this->slope; } /** * Return the standard error of the Slope * * @param int $dp Number of places of decimal precision to display * @return string */ public function getSlopeSE($dp = 0) { if ($dp != 0) { return round($this->slopeSE, $dp); } return $this->slopeSE; } /** * Return the Value of X where it intersects Y = 0 * * @param int $dp Number of places of decimal precision to display * @return string */ public function getIntersect($dp = 0) { if ($dp != 0) { return round($this->intersect, $dp); } return $this->intersect; } /** * Return the standard error of the Intersect * * @param int $dp Number of places of decimal precision to display * @return string */ public function getIntersectSE($dp = 0) { if ($dp != 0) { return round($this->intersectSE, $dp); } return $this->intersectSE; } /** * Return the goodness of fit for this regression * * @param int $dp Number of places of decimal precision to return * @return float */ public function getGoodnessOfFit($dp = 0) { if ($dp != 0) { return round($this->goodnessOfFit, $dp); } return $this->goodnessOfFit; } public function getGoodnessOfFitPercent($dp = 0) { if ($dp != 0) { return round($this->goodnessOfFit * 100, $dp); } return $this->goodnessOfFit * 100; } /** * Return the standard deviation of the residuals for this regression * * @param int $dp Number of places of decimal precision to return * @return float */ public function getStdevOfResiduals($dp = 0) { if ($dp != 0) { return round($this->stdevOfResiduals, $dp); } return $this->stdevOfResiduals; } public function getSSRegression($dp = 0) { if ($dp != 0) { return round($this->SSRegression, $dp); } return $this->SSRegression; } public function getSSResiduals($dp = 0) { if ($dp != 0) { return round($this->SSResiduals, $dp); } return $this->SSResiduals; } public function getDFResiduals($dp = 0) { if ($dp != 0) { return round($this->DFResiduals, $dp); } return $this->DFResiduals; } public function getF($dp = 0) { if ($dp != 0) { return round($this->f, $dp); } return $this->f; } public function getCovariance($dp = 0) { if ($dp != 0) { return round($this->covariance, $dp); } return $this->covariance; } public function getCorrelation($dp = 0) { if ($dp != 0) { return round($this->correlation, $dp); } return $this->correlation; } public function getYBestFitValues() { return $this->yBestFitValues; } protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const) { $SSres = $SScov = $SScor = $SStot = $SSsex = 0.0; foreach ($this->xValues as $xKey => $xValue) { $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue); $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY); if ($const) { $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY); } else { $SStot += $this->yValues[$xKey] * $this->yValues[$xKey]; } $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY); if ($const) { $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX); } else { $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey]; } } $this->SSResiduals = $SSres; $this->DFResiduals = $this->valueCount - 1 - $const; if ($this->DFResiduals == 0.0) { $this->stdevOfResiduals = 0.0; } else { $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals); } if (($SStot == 0.0) || ($SSres == $SStot)) { $this->goodnessOfFit = 1; } else { $this->goodnessOfFit = 1 - ($SSres / $SStot); } $this->SSRegression = $this->goodnessOfFit * $SStot; $this->covariance = $SScov / $this->valueCount; $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - pow($sumX, 2)) * ($this->valueCount * $sumY2 - pow($sumY, 2))); $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex); $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2)); if ($this->SSResiduals != 0.0) { if ($this->DFResiduals == 0.0) { $this->f = 0.0; } else { $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals); } } else { if ($this->DFResiduals == 0.0) { $this->f = 0.0; } else { $this->f = $this->SSRegression / $this->DFResiduals; } } } protected function leastSquareFit($yValues, $xValues, $const) { // calculate sums $x_sum = array_sum($xValues); $y_sum = array_sum($yValues); $meanX = $x_sum / $this->valueCount; $meanY = $y_sum / $this->valueCount; $mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0; for ($i = 0; $i < $this->valueCount; ++$i) { $xy_sum += $xValues[$i] * $yValues[$i]; $xx_sum += $xValues[$i] * $xValues[$i]; $yy_sum += $yValues[$i] * $yValues[$i]; if ($const) { $mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY); $mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX); } else { $mBase += $xValues[$i] * $yValues[$i]; $mDivisor += $xValues[$i] * $xValues[$i]; } } // calculate slope // $this->slope = (($this->valueCount * $xy_sum) - ($x_sum * $y_sum)) / (($this->valueCount * $xx_sum) - ($x_sum * $x_sum)); $this->slope = $mBase / $mDivisor; // calculate intersect // $this->intersect = ($y_sum - ($this->slope * $x_sum)) / $this->valueCount; if ($const) { $this->intersect = $meanY - ($this->slope * $meanX); } else { $this->intersect = 0; } $this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum, $meanX, $meanY, $const); } /** * Define the regression * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression * @param boolean $const */ public function __construct($yValues, $xValues = array(), $const = true) { // Calculate number of points $nY = count($yValues); $nX = count($xValues); // Define X Values if necessary if ($nX == 0) { $xValues = range(1, $nY); $nX = $nY; } elseif ($nY != $nX) { // Ensure both arrays of points are the same size $this->error = true; return false; } $this->valueCount = $nY; $this->xValues = $xValues; $this->yValues = $yValues; } }
Copyright ©2021 || Defacer Indonesia